Published February 29, 2020
| Version v1
Journal article
Restricted
Exploiting the potential of micropropagated durum wheat organs as modified mycotoxin biofactories: The case of deoxynivalenol
Authors/Creators
- 1. ∗ & Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
Description
Righetti, Laura, Damiani, Tito, Rolli, Enrico, Galaverna, Gianni, Suman, Michele, Bruni, Renato, Dall'Asta, Chiara (2020): Exploiting the potential of micropropagated durum wheat organs as modified mycotoxin biofactories: The case of deoxynivalenol. Phytochemistry (112194) 170: 1-7, DOI: 10.1016/j.phytochem.2019.112194, URL: http://dx.doi.org/10.1016/j.phytochem.2019.112194
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFB91E3D30060122551CEC6D752CFF87
Related works
- Has part
- Figure: 10.5281/zenodo.8292775 (DOI)
- Figure: 10.5281/zenodo.8292777 (DOI)
- Figure: 10.5281/zenodo.8292779 (DOI)
- Figure: 10.5281/zenodo.8292781 (DOI)
- Figure: 10.5281/zenodo.8292783 (DOI)
References
- Abhilash, P.C., Jamil, S., Singh, N., 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv. 27 (4), 474-488.
- Asam, S., Habler, K., Rychlik, M., 2017. Fusarium mycotoxins in food. In: Chemical Contaminants and Residues in Food, second ed. pp. 295-336.
- Bartikova, H., Skalova, L., Stuchlikova, L., Vokral, I., Vanek, T., Podlipna, R., 2015. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev. 47 (3), 374-387.
- Berthiller, F., Werner, U., Sulyok, M., Krska, R., Hauser, M.T., Schuhmacher, R., 2006. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit. Contam. 23 (11), 1194-1200.
- Berthiller, F., Crews, C., Dall'Asta, C., Saeger, S.D., Haesaert, G., Karlovsky, P., et al., 2013. Masked mycotoxins: a review. Mol. Nutr. Food Res. 57 (1), 165-186.
- Briggs, G., Bromilow, R., Evans, A., 1982. Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 13, 495-504.
- Cirlini, M., Generotti, S., Dall'Erta, A., Lancioni, P., Ferrazzano, G., Massi, A., et al., 2013. Durum wheat (Triticum Durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions. Toxins 6 (1), 81-95.
- Commission Regulation (EC) No 1126/2007, 28 September 2007. Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Fusarium Toxins in Maize and Maize Products.
- Dellafiora, L., Dall'Asta, C., 2016. Masked mycotoxins: an emerging issue that makes renegotiable what is ordinary. Food Chem. 213, 534-535.
- Diamond, M., Reape, T.J., Rocha, O., Doyle, S.M., Kacprzyk, J., Doohan, F.M., McCabe, P.F., 2013. The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS One 8 (7), e69542.
- Edwards, R., Dixon, D.P., Cummins, I., Brazier-Hicks, M., Skipsey, M., 2011. New perspectives on the metabolism and detoxification of synthetic compounds in plants. In: Organic Xenobiotics and Plants. Springer Netherlands, pp. 125-148.
- Escriva, L., Font, G., Manyes, L., 2015. In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem. Toxicol. 78, 185-206.
- Ferrigo, D., Raiola, A., Causin, R., 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21 (5), 627.
- Freire, L., Sant' Ana, A.S., 2018. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 111, 189-205.
- Gratz, S.W., 2017. Do plant-bound masked mycotoxins contribute to toxicity? Toxins 9 (3), 85.
- Kluger, B., Bueschl, C., Lemmens, M., Michlmayr, H., Malachova, A., Koutnik, A., et al., 2015. Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines. PLoS One 10 (3), e0119656.
- Krska, R., Sulyok, M., Berthiller, F., Schuhmacher, R., 2017. Mycotoxin testing: from Multi-toxin analysis to metabolomics. JSM Mycotoxins 67 (1), 11-16.
- Paterson, S., Mackay, D., McFarlane, C.A., 1994. Model of organic chemical uptake by plants from soil and the atmosphere. Environ. Sci. Technol. 28, 2259-2266.
- Righetti, L., Rolli, E., Galaverna, G., Suman, M., Bruni, R., Dall'Asta, C., 2017. Plant organ cultures as masked mycotoxin biofactories: deciphering the fate of zearalenone in micropropagated durum wheat roots and leaves. PLoS One 12 (11), e0187247.
- Righetti, L., Dellafiora, L., Cavanna, D., Rolli, E., Galaverna, G., Bruni, R., Suman, M., Dall'Asta, C., 2018. Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry. Analytical and Bionalytical Chemistry 410, 5583-5592.
- Righetti, L., Korber, T., Rolli, E., Galaverna, G., Suman, M., Bruni, R., Dall'Asta, C., 2019. Plant biotransformation of T2 and HT2 toxin in cultured organs of Triticum durum Desf. Sci. Rep. 9, 14320.
- Rolli, E., Righetti, L., Galaverna, G., Suman, M., Dall'Asta, C., Bruni, R., 2018. Zearalenone uptake and biotransformation in micropropagated Triticum durum Desf. Plants: a xenobolomic approach. J. Agric. Food Chem. 66, 1523-1532.
- Ruttkies, C., Schymanski, E.L., Wolf, S., Hollender, J., Neumann, S., 2016. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminf. 29 (8), 3.
- Sandermann Jr., H., 1994. Higher plant metabolism of xenobiotics: the 'green liver' concept. Pharmacogenetics Genom. 4 (5), 225-241.
- Siminszky, B., 2006. Plant cytochrome P450-mediated herbicide metabolism. Phytochem. Rev. 5 (2), 445-458.
- Spaggiari, M., Righetti, L., Galaverna, G., Giordano, D., Scarpino, V., Blandino, M., Dall'Asta, C., 2019. HR-MS profiling and distribution of native and modified Fusarium mycotoxins in tritordeum, wheat and barley whole grains and corresponding pearled fractions. J. Cereal Sci. 87, 178-184.
- Tangni, E.K., Debongnie, P., Huybrechts, B., Van Hove, F., Callebaut, A., 2017. Towards the development of innovative multi-mycotoxin reference materials as promising metrological tool for emerging and regulated mycotoxin analyses. Mycotoxin Res. 33 (1), 15-24.
- van der Lee, T., Zhang, H., van Diepeningen, A., Waalwijk, C., 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. A 32 (4), 453-460.
- Visconti, A., Pascale, M., 2010. An overview on Fusarium mycotoxins in the durum wheat pasta production chain. Cereal Chem. 87, 21-27.
- Warth, B., Fruhmann, F., Wiesenberger, G., Kluger, B., Sarkanj, B., Lemmens, M., Hametner, C., Frohlich, J., Adam, G., Krska, R., Schuhmacher, R., 2015. Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Anal. Bioanal. Chem. 407, 1033-1039.
- Zachariasova, M., Vaclavikova, M., Lacina, O., Vaclavik, L., Hajslova, J., 2012. Deoxynivalenol oligoglycosides: new "masked" Fusarium toxins occurring in malt, beer, and breadstuff. J. Agric. Food Chem. 60, 9280-9291.