Published December 31, 2020 | Version v1
Journal article Restricted

Lipoxygenase pathway in model bryophytes: 12-oxo-9(13),15-phytodienoic acid is a predominant oxylipin in Physcomitrella patens

Description

Mukhtarova, Lucia S., Lantsova, Natalia V., Khairutdinov, Bulat I., Grechkin, Alexander N. (2020): Lipoxygenase pathway in model bryophytes: 12-oxo-9(13),15-phytodienoic acid is a predominant oxylipin in Physcomitrella patens. Phytochemistry (112533) 180: 1-7, DOI: 10.1016/j.phytochem.2020.112533, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112533

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

References

  • Bandara, P.K., Takahashi, K., Sato, M., Matsuura, H., Nabeta, K., 2009. Cloning and functional analysis of an allene oxide synthase in Physcomitrella patens. Biosci. Biotechnol. Biochem. 73, 2356-2359.
  • Birkett, M.A., Campbell, C.A.M., Chamberlain, K., Guerrieri, E., Hick, A.J., Martin, J.L., Matthes, M., Napier, J.A., Pettersson, J., Pickett, J.A., Poppy, G.M., Pow, E.M., Pye, B.J., Smart, L.E., Wadhams, G.H., Wadhams, L.J., Woodcock, C.M., 2000. New roles for cis -jasmone as an insect semiochemical and in plant defense. In: Proc. Natl Acad. Sci. USA, vol. 97, pp. 9329-9334.
  • Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., et al., 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287-304.
  • Bruce, T.J.A., Matthes, M.C., Chamberlain, K., Woodcock, C.M., Mohib, A., Webster, B., Smart, L.E., Birkett, M.A., Pickett, J.A., Napier, J.A., 2008. cis -Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. In: Proc. Natl Acad. Sci. USA, vol. 105, pp. 4553-4558.
  • Burkman, A.M., 1982. Acute toxicity of prostaglandin Bx in male, albino, ICR mice. Res. Commun. Chem. Pathol. Pharmacol. 37, 97-104.
  • Cansu, T.B., Yayli, B., Ozdemir ¨, T., Batan, N., Karaoglu ˘, S.A., Yayli, N., 2013. Antimicrobial activity and chemical composition of the essential oils of mosses (Hylocomium splendens (Hedw.) Schimp. and Leucodon sciuroides (Hedw.) Schw¨agr.) growing in Turkey. Turk. J. Chem. 37, 213-219.
  • Creelman, R.A., Mullet, J.E., 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Biol. 48, 355-381.
  • Da Graca, J.P., Ueda, T.E., Janegitz, T., Vieira, S.S., Salvador, M.C., de Oliveira, M.C., Zingaretti, S.M., Powers, S.J., Pickett, J.A., Birkett, M.A., Hoffmann-Campo, C.B., 2016. The natural plant stress elicitor cis -jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max. Phytochemistry 131, 84-91.
  • Dabrowska, P., Boland, W., 2007. iso -OPDA: an early precursor of cis -jasmone in plants? Chembiochem 8, 2281-2285.
  • Dabrowska, P., Freitak, D., Vogel, H., Heckel, D.G., Boland, W., 2009. The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase. Proc. Natl. Acad. Sci. U.S.A. 106, 16304-16309.
  • Grechkin, A.N., Chechetkin, I.R., Mukhtarova, L.S., Hamberg, M., 2002. Role of structure and pH in cyclization of allene oxide fatty acids: implications for the reaction mechanism. Chem. Phys. Lipids 120, 87-99.
  • Heitz, T., Smirnova, E., Widemann, E., Aubert, Y., Pinot, F., M´enard, R., 2016. The rise and fall of jasmonate biological activities. In: Nakamura, Y., Li-Beisson, Y. (Eds.), Lipids in Plant and Algae Development. Springer, Cham, Heidelberg, New York, Dordrecht, London, pp. 405-426.
  • Ichikawa, T., Namikawa, M., Yamada, K., Sakai, K., Kondo, K., 1983. Novel cyclopentenonyl fatty acids from mosses, Dicranum scoparium and Dicranum japonicum. Tetrahedron Lett. 24, 3337-3340.
  • Ichikawa, T., Yamada, K., Namikawa, M., Sakai, K., Kondo, K., 1984. New cyclopentenonyl fatty acids from Japanese mosses. J. Hattori Bot. Lab. 56, 209-213.
  • Koeduka, T., Ishizaki, K., Mwenda, C.M., Hori, K., Sasaki-Sekimoto, Y., Ohta, H., Kohchi, T., Matsui, K., 2015. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta 242, 1175-1186.
  • Li, W., Lybrand, D.B., Zhou, F., Last, R.L., Pichersky, E., 2019. Pyrethrin biosynthesis: the cytochrome P450 oxidoreductase CYP82Q3 converts jasmolone to pyrethrolone. Plant Physiol 181, 934-944.
  • Li, W., Zhou, F., Pichersky, E., 2018. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides. Plant Physiol 177, 1498-1509.
  • Loeffler, C., Berger, S., Guy, A., Durand, T., Bringmann, G., Dreyer, M., von Rad, U., Durner, J., Mueller, M.J., 2005. B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol 137, 328-340.
  • Matsui, R., Amano, N., Takahashi, K., Taguchi, Y., Saburi, W., Mori, H., Kondo, N., Matsuda, K., Matsuura, H., 2017. Elucidation of the biosynthetic pathway of cis - jasmone in Lasiodiplodia theobromae. Sci. Rep. 7, 1-9.
  • Matsui, R., Takiguchi, K., Matsuda, K., Takahashi, K., Matsuura, H., 2019. Feeding experiment using uniformly 13 C-labeled α- linolenic acid supports the involvement of the decarboxylation mechanism to produce cis -jasmone in Lasiodiplodia theobromae. Biosci. Biotechnol. Biochem. 83, 2190-2193.
  • Monte, I., Ishida, S., Zamarretno, A.M., Hamberg, M., Franco-Zorrilla, J.M., GarciaCasado, G., Gouhier-Darimont, C., Reymond, P., Takahashi, K., Garcia-Mina, J.M., Nishihama, R., Kohchi, T., Solano, R., 2018. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 14, 480-488.
  • Moraes, M.C.B., Birkett, M.A., Gordon-Weeks, R., Smart, L.E., Martin, J.L., Pye, B.J., Bromilow, R., Pickett, J.A., 2008. cis -Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69, 9-17.
  • Mukhtarova, L.S., Mukhitova, F.K., Gogolev, Y.V., Grechkin, A.N., 2011. Hydroperoxide lyase cascade in pea seedlings: non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry 72, 356-364.
  • Neumann, P., Brodhun, F., Sauer, K., Herrfurth, C., Hamberg, M., Brinkmann, J., Scholz, J., Dickmanns, A., Feussner, I., Ficner, R., 2012. Crystal structures of Physcomitrella patens AOC1 and AOC2: insights into the enzyme mechanism and differences in substrate specificity. Plant Physiol 160, 1251-1266.
  • Ogorodnikova, A.V., Latypova, L.R., Mukhitova, F.K., Mukhtarova, L.S., Grechkin, A.N., 2008. Detection of divinyl ether synthase in Lily-of-the-Valley (Convallaria majalis) roots. Phytochemistry 69, 2793-2798.
  • Ogorodnikova, A.V., Mukhitova, F.K., Grechkin, A.N., 2015. Oxylipins in the spikemoss Selaginella martensii: detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones. Phytochemistry 118, 42-50.
  • Oliver, J.P., Castro, A., Gaggero, C., Casc´on, T., Schmelz, E.A., Castresana, C., Ponce de Le´on, I., 2009. Pythium infection activates conserved plant defense responses in mosses. Planta 230, 569-579.
  • Oluwafemi, S., Dewhirst, S.Y., Veyrat, N., Powers, S., Bruce, T.J., Caulfield, J.C., Pickett, J.A., Birkett, M.A., 2013. Priming of production in maize of volatile organic defence compounds by the natural plant activator cis -jasmone. PloS One 8, e62299.
  • Osipova, E.V., Lantsova, N.V., Chechetkin, I.R., Mukhitova, F.K., Hamberg, M., Grechkin, A.N., 2010. Hexadecanoid pathway in plants: lipoxygenase dioxygenation of (7Z,10Z,13Z)-hexadecatrienoic acid. Biochemistry (Moscow) 75, 708-716.
  • Ponce de Leon ´, I., Hamberg, M., Castresana, C., 2015. Oxylipins in moss development and defense. Front. Plant Sci. 6, 483.
  • Ponce de Leon ´, I., Schmelz, E.A., Gaggero, C., Castro, A., Alvarez ´, A., Montesano, M., 2012. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. Mol. Plant Pathol. 13, 960-974.
  • Pejin, B., Vujisic, L., Sabovljevic, M., Tesevic, V., Vajs, V., 2011. Preliminary data on essential oil composition of the moss Rhodobryum ontariense (Kindb.). Kindb. Cryptogamie, Bryologie 32, 113-117.
  • Pratiwi, P., Tanaka, G., Takahashi, T., Xie, X., Yoneyama, K., Matsuura, H., Takahashi, K., 2017. Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiol. 58, 789-801.
  • Rempt, M., Pohnert, G., 2010. Novel acetylenic oxylipins from the moss Dicranum scoparium with antifeeding activity against herbivorous slugs. Angew. Chem. Int. Ed. 49, 4755-4758.
  • Resemann, H.C., Lewandowska, M., G¨omann, J., Feussner, I., 2019. Membrane lipids, waxes and oxylipins in the moss model organism Physcomitrella patens. Plant Cell Physiol. 60, 1166-1175.
  • Sakai, K., Fujimoto, T., Yamashita, M., Kondo, K., 1985. Total synthesis of (±)-dicranenones, novel cyclopentenonyl fatty acids. Tetrahedron Lett. 26, 2089-2092.
  • Scholz, J., Brodhun, F., Hornung, E., Herrfurth, C., Stumpe, M., Beike, A.K., Faltin, B., Frank, W., Reski, R., Feussner, I., 2012. Biosynthesis of allene oxides in Physcomitrella patens. BMC Plant Biol. 12, 228.
  • Schulze, B., Dabrowska, P., Boland, W., 2007. Rapid enzymatic isomerization of 12- oxophytodienoic acid in the gut of lepidopteran larvae. Chembiochem 8, 208-216.
  • Senger, T., Wichard, T., Kunze, S., Gobel ¨, C., Lerchl, J., Pohnert, G., Feussner, I., 2005. A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J. Biol. Chem. 280, 7588-7596.
  • Sobhy, I.S., Woodcock, C.M., Powers, S.J., Caulfield, J.C., Pickett, J.A., Birkett, M.A., 2017. cis -Jasmone elicits aphid-induced stress signalling in potatoes. J. Chem. Ecol. 43, 39-52.
  • Stumpe, M., Bode, J., Gobel ¨, C., Wichard, T., Schaaf, A., Frank, W., Frank, M., Reski, R., Pohnert, G., Feussner, I., 2006. Biosynthesis of C9-aldehydes in the moss Physcomitrella patens. Biochim. Biophys. Acta 1761, 301-312.
  • Stumpe, M., G¨obel, C., Faltin, B., Beike, A.K., Hause, B., Himmelsbach, K., Bode, J., Kramell, R., Wasternack, C., Frank, W., Reski, R., Feussner, I., 2010. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 188, 740-749.
  • Vick, B.A., Zimmerman, D.C., Weisleder, D., 1979. Thermal alteration of a cyclic fatty acid produced by a flaxseed extract. Lipids 14, 734-740.
  • Wasternack, C., Hause, B., 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review. In: Ann. Bot, vol. 111, pp. 1021-1058.
  • Wasternack, C., Feussner, I., 2018. The oxylipin pathways: biochemistry and function. Annu. Rev. Plant Biol. 69, 363-386.
  • Wasternack, C., Strnad, M., 2018. Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int. J. Mol. Sci. 19, e2539.
  • Weber, H., Vick, B.A., Farmer, E.E., 1997. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. In: Proc. Natl. Acad. Sci. USA, vol. 94, pp. 10473-10478.
  • Yamamoto, Y., Ohshika, J., Takahashi, T., Ishizaki, K., Kohchi, T., Matusuura, H., Takahashi, K., 2015. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry 116, 48-56.
  • Yeruva, L., Pierre, K.J., Bathina, M., Elegbede, A., Carper, S.W., 2008. Delayed cytotoxic effects of methyl jasmonate and cis -jasmone induced apoptosis in prostate cancer cells. Canc. Invest. 26, 890-899.