Published April 30, 2021
| Version v1
Journal article
Restricted
Triterpene glycosides and phenylpropane derivatives from Staurogyne concinnula possessing anti-angiogenic activity
Creators
- 1. ** & *** & * & Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan & ** & * & National Research Institute of Chinese Medicine, Taipei, 11221, Taiwan
Description
Vo, Thanh-Hoa, Lin, Yu-Chi, Liaw, Chia-Ching, Pan, Wen-Pin, Cheng, Jing-Jy, Lee, Ching-Kuo, Kuo, Yao-Haur (2021): Triterpene glycosides and phenylpropane derivatives from Staurogyne concinnula possessing anti-angiogenic activity. Phytochemistry (112666) 184: 1-9, DOI: 10.1016/j.phytochem.2021.112666, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112666
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:C3469006FFC5FFE4FFDA6919F50E1623
References
- Chen, C.T., Chen, L.H., 1976. Studies in natural products (14): a study on constituents of "Staurogyne concinnula" (Hance) O. Kuntze. Bull. Inst. Chem. Academia Sinica 23, 34-36.
- Hiura, A., Akabane, T., Ohtani, K., Kasai, R., Yamasaki, K., Kurihara, Y., 1996. Taste-modifying triterpene glycosides from Staurogyne merguensis. Phytochemistry 43, 1023-1027. https://doi.org/10.1016/S0031-9422(96)00385-8.
- Hsieh, C.F., Huang, T.C., 1998. Acanthaceae In: Flora of Taiwan, second ed., vol. 4. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taiwan, pp. 686-687.
- Kanchanapoom, T., Kasai, R., Yamasaki, K., 2001. Lignan and phenylpropanoid glycosides from Fernandoa adenophylla. Phytochemistry 57, 1245-1248. https://doi. org/10.1016/s0031-9422(01)00212-6.
- Kerbel, R., Folkman, J., 2002. Clinical translation of angiogenesis inhibitors. Nat. Rev. Canc. 2, 727-739. https://doi.org/10.1038/nrc905.
- Li, H.M., Kim, J.K., Jang, J.M., Cui, C.B., Lim, S.S., 2013. Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography. Arch Pharm. Res. (Seoul) 36, 1104-1112. https://doi.org/10.1007/s12272-013-0127-1.
- Lin, C.C., Hung, W.T., Kuo, C.Y., Liao, K.S., Liu, Y.C., Yang, W.B., 2010. I2-Catalyzed oxidative condensation of aldose with diamines: synthesis of aldo-naphthimidazoles for carbohydrate analysis. Molecules 15, 1340-1353. https://doi.org/10.3390/ molecules15031340.
- Masullo, M., Pizza, C., Piacente, S., 2017. Oleanane derivatives for pharmaceutical use: a patent review (2000-2016). Expert Opin. Ther. Pat. 27, 237-255. https://doi.org/ 10.1080/13543776.2017.1253680.
- Rajasekar, J., Perumal, M.K., Vallikannan, B.J., 2019. A critical review on anti-angiogenic property of phytochemicals. J. Nutr. Biochem. 71, 1-15. https://doi.org/ 10.1016/j.jnutbio.2019.04.006.
- Reuter, J.A., Ortiz-Urda, S., Kretz, M., Garcia, J., Scholl, F.A., Pasmooij, A.M., 2009. Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression. Canc. Cell 15, 477-488. https:// doi.org/10.1016/j.ccr.2009.04.002.
- Salvador, J.A.R., Leal, A.S., Valdeira, A.S., Goncalves, B.M.F., Alho, D.P.S., Figueiredo, S. A.C., Silvestre, S.M., Mendes, V.I.S., 2017. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: recent advances in cancer treatment. Eur. J. Med. Chem. 142, 95-130. https://doi.org/10.1016/j.ejmech.2017.07.013.
- Solum, E.J., Cheng, J.J., Sorvik, I.B., Paulsen, R.E., Vik, A., Hansen, T.V., 2014. Synthesis and biological evaluations of new analogs of 2-methoxyestradiol: inhibitors of tubulin and angiogenesis. Eur. J. Med. Chem. 85, 391-398. https://doi.org/ 10.1016/j.ejmech.2014.08.002.
- Udayama, M., Kinjo, J., Nohara, T., 1998. Triterpenoidal saponin from Baptisia australis. Phytochemistry 48, 1233-1235. https://doi.org/10.1016/s0031-9422(98)00162-9.
- Wang, Y., Berhow, M.A., Black, M., Jeffery, E.H., 2020. A comparison of the absorption and metabolism of the major quercetin in Brassica, quercetin-3-O -sophoroside, to that of quercetin aglycone, in rats. Food Chem. 311, 125880. https://doi.org/ 10.1016/j.foodchem.2019.125880.