Published March 31, 2021 | Version v1
Journal article Restricted

Comparative transcriptome analysis infers bulb derived in vitro cultures as a promising source for sipeimine biosynthesis in Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.) - High value Himalayan medicinal herb

  • 1. * & ** & Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

Description

Kumar, Pankaj, Ashrita, Acharya, Vishal, Warghat, Ashish R. (2021): Comparative transcriptome analysis infers bulb derived in vitro cultures as a promising source for sipeimine biosynthesis in Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.) - High value Himalayan medicinal herb. Phytochemistry (112631) 183: 1-12, DOI: 10.1016/j.phytochem.2020.112631, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112631

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFDE8B11FD0FFFDA4D25C926375CFF99

References

  • Ahmad, S., Garg, M., Tamboli, E.T., Abdin, M.Z., Ansari, S.H., 2013. In vitro production of alkaloids: factors, approaches, challenges and prospects. Pharmacogn. Rev. 7, 27-33. https://doi.org/10.4103/0973-7847.112837.
  • Anders, S., Huber, W., 2012. Differential expression of RNA-Seq data at the gene level-the DESeq package. https://www.bioconductor.org/packages/devel/workflow s/vignettes/rnaseqGene/inst/doc/rnaseqGene.html.
  • Bankar, K.G., Todur, V.N., Shukla, R.N., Vasudevan, M., 2015. Ameliorated de novo transcriptome assembly using Illumina paired end sequence data with Trinity Assembler. Genomics data 5, 352-359. https://doi.org/10.1016/j. gdata.2015.07.012.
  • Bisht, V.K., Negi, B.S., Bhandari, A.K., Kandari, L.S., 2016. Fritillaria roylei Hook. In Western Himalaya: species biology, traditional use, chemical constituents, concern and opportunity. J. Med. Plant. Res. 10, 375-381. https://doi.org/10.3923/ rjmp.2016.375.381.
  • Blighe, K., 2019. Enhanced Volcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. R package, version 1.2. 0. https://www.bioconductor.org/ packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.ht ml.
  • Carasso, V., Hay, F.R., Probert, R.J., Mucciarelli, M., 2011. Temperature control of seed germination in Fritillaria tubiformis subsp. moggridgei (Liliaceae) a rare endemic of the South-West Alps. Seed Sci. Res. 21, 33-38. https://doi.org/10.1017/ S0960258510000310.
  • Chan, S.W., Li, P., Yiu-Wa, K., Lin, G., 2011. In vitro tracheobronchial relaxation of Fritillaria alkaloids. Chin. J. Nat. Med. 9, 345-353. https://doi.org/10.3724/SP. J.1009.2011.00345.
  • Chauhan, R., Nautiyal, M.C., Vashistha, R.K., Prasad, P., Nautiyal, A.R., Kumar, A., Teixeira da Silva, J.A., 2011. Morpho-biochemical variability and selection strategies for the germplasm of Fritillaria roylei Hook. (Liliaceae)- an endangered medicinal herb of Western Himalaya. India J. Plant Breed. Crop Sci. 3, 430-434. https://doi.org/10.5897/JPBCS11.081.
  • Chezem, W.R., Clay, N.K., 2016. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry (Oxf.) 131, 26-43. https://doi.org/10.1016/j.phytochem.2016.08.006.
  • Conesa, A., Gotz, S., 2008. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genom. 2008, 619832. https://doi.org/10.1155/2008/ 619832.
  • Duraisamy, G.S., Mishra, A.K., Kocabek, T., Matouˇsek, J., 2016. Identification and characterization of promoters and cis-regulatory elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L). Comput. Biol. Chem. 64, 346-352. https://doi.org/10.1016/j.compbiolchem.2016.07.010.
  • Eshaghi, M., Shiran, B., Fallahi, H., Ravash, R., Deri, B.B., 2019. Identification of genes involved in steroid alkaloid biosynthesis in Fritillaria imperialis via de novo transcriptomics. Genomics 111, 1360-1372. https://doi.org/10.1016/j. ygeno.2018.09.008.
  • Espinosa-Leal, C.A., Puente-Garza, C.A., Garcia-Lara, S., 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta 248, 1-18. https://doi.org/10.1007/s00425-018-2910-1.
  • Feussner, I., Polle, A., 2015. What the transcriptome does not tell-proteomics and metabolomics are closer to the plants' pathophenotype. Curr. Opin. Plant Biol. 26, 26-31. https://doi.org/10.1016/j.pbi.2015.05.023.
  • Gao, S.L., Zhu, D.N., Cai, Z.H., Jiang, Y., Xu, D.R., 1999. Organ culture of a precious Chinese medicinal plant Fritillaria unibracteata. Plant Cell Tissue Organ Cult. 59, 197-201. https://doi.org/10.1023/A:1006440801337.
  • Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494. https://doi.org/10.1038/nprot.2013.084.
  • Han, R., Rai, A., Nakamura, M., Suzuki, H., Takahashi, H., Yamazaki, M., Saito, K., 2016. De novo deep transcriptome analysis of medicinal plants for gene discovery in biosynthesis of plant natural products. Methods Enzymol. 576, 19-45. https://doi. org/10.1016/bs.mie.2016.03.001.
  • Jain, K.S., Khedkar, V.M., Arya, N., Rane, P.V., Chaskar, P.K., Coutinho, E.C., 2014. Design, synthesis & evaluation of condensed 2H-4-arylaminopyrimidines as novel antifungal agents. Eur. J. Med. Chem. 77, 166-175. https://doi.org/10.1016/j. ejmech.2014.02.066.
  • Jiang, R.W., Ma, S.C., But, P.P., Dong, H., Mak, T.C.W., 2001. Sipeimine, a steroidal alkaloid from Fritillaria royeli Hooker. Acta Crystallogr. C. 57, 170-171. https://doi. org/10.1107/S0108270100014499.
  • Jin, J., Zhang, H., Kong, L., Gao, G., Luo, J., 2013. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 42, D1182-D1187. https://doi.org/10.1093/nar/gkt1016.
  • Joshi, S.K., Dhar, U., Andola, H.C., 2007. In vitro bulblet regeneration and evaluation of Fritillaria roylei Hook. - a high value medicinal herb of the Himalaya. Acta Hortic. 756, 75-84. https://doi.org/10.17660/ActaHortic.2007.756.8.
  • Jun, X.U., Xin-yu, W., Wang-zhen, G., 2015. The cytochrome P450 superfamily: key players in plant development and defense. J. Integr. Agric. 14, 1673-1686. https:// doi.org/10.1016/S2095-3119(14)60980-1.
  • Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30. https://doi.org/10.1093/nar/28.1.27.
  • Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., Martinoia, E., 2011. Plant ABC transporters. Arabidopsis Book 9, e0153. https://doi.org/10.1199/tab.0153.
  • Kim, H.B., Schaller, H., Goh, C.H., Kwon, M., Choe, S., An, C.S., Durst, F., Feldmann, K. A., Feyereisen, R., 2005. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiol. 138, 2033-2047. https://doi.org/10.1104/pp.105.061598.
  • Kim, Y.J., Zhang, D., Yang, D.C., 2015. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 33, 717-735. https://doi.org/10.1016/j. biotechadv.2015.03.001.
  • Kumar, P., Partap, M., Ashrita, RanaD., Kumar, P., Warghat, A.R., 2020. Metabolite and expression profiling of steroidal alkaloids in wild tissues compared to bulb derived in vitro cultures of Fritillaria roylei - high value critically endangered Himalayan medicinal herb. Ind. Crops prod. 145, 111945. https://doi.org/10.1016/j. indcrop.2019.111945.
  • Li, J., Wang, C., Han, X., Qi, W., Chen, Y., Wang, T., Zheng, Y., Zhao, X., 2016. Transcriptome analysis to identify the putative biosynthesis and transport genes associated with the medicinal components of Achyranthes bidentata Bl. Front. Plant Sci. 7, 1860. https://doi.org/10.3389/fpls.2016.01860.
  • Li, W., Godzik, A., 2006. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659. https://doi.org/ 10.1093/bioinformatics/btl158.
  • Lin, C., Wu, C.S., Huang, Y.Y., Chaw, S.M., 2012. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol. Evol. 4, 347-381. https://doi.org/10.1093/gbe/evs021.
  • Luo, D., Liu, Y., Wang, Y., Zhang, X., Huang, L., Duan, B., 2018. Rapid identification of Fritillaria cirrhosa bulbs and its adulterants by UPLC-ELSD fingerprint combined with chemometrics methods. Biochem. Systemat. Ecol. 76, 46-51. https://doi.org/ 10.1016/j.bse.2017.12.007.
  • Luo, H., Chen, S., 2019. Progress on the transcriptome analysis of medicinal plants with next-generation sequencing technologies. Encycl. Anal. Chem. https://doi.org/ 10.1002/9780470027318.a9936.pub2.
  • Ma, B., Tredway, L.P., 2013. Induced overexpression of cytochrome P450 sterol 14α- demethylase gene (CYP51) correlates with sensitivity to demethylation inhibitors (DMIs) in Sclerotinia homoeocarpa. Pest Manag. Sci. 69, 1369-1378. https://doi. org/10.1002/ps.3513.
  • Mehrotra, N.N., Ojha, S.K., 2006. Ayurvedic Rasayana Therapy and Rejuvenation (KayaKalp) Current R&D Highlights. January-March, pp. 6-10.
  • Mizutani, M., Ohta, D., 2010. Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 61, 291-315. https://doi.org/10.1146/annurev-arplant- 042809-112305.
  • Morant, M., Schoch, G.A., Ullmann, P., Ertunc, T., Little, D., Olsen, C.E., Petersen, M., Negrel, J., Werck-Reichhart, D., 2007. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol. Biol. 63, 1-19. https:// doi.org/10.1007/s11103-006-9028-8.
  • Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182-W185. https://doi.org/10.1093/nar/gkm321.
  • Nag, A., Choudhary, S., Masand, M., Parmar, R., Bhandawat, A., Setha, R., Singh, G., Dhyani, P., Sharma, R.K., 2020. Spatial transcriptional dynamics of geographically separated genotypes revealed key regulators of podophyllotoxin biosynthesis in Podophyllum hexandrum. Ind. Crop. Prod. 147, 112247. https://doi.org/10.1016/j. indcrop.2020.112247.
  • Nalawade, S.M., Sagare, A.P., Lee, C.Y., Kao, C.L., Tsay, H.S., 2003. Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization. Bot. Bull. Acad. Sinica 44, 79-98. https://scholars.tari.gov.tw/ha ndle/123456789/1788.
  • Niazian, M., 2019. Application of genetics and biotechnology for improving medicinal plants. Planta 249, 953-973. https://doi.org/10.1007/s00425-019-03099-1.
  • Pal, T., Malhotra, N., Chanumolu, S.K., Chauhan, R.S., 2015. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall. Planta 242, 239-258. https://doi.org/10.1007/s00425-015- 2304-6.
  • Patel, R.K., Jain, M., 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PloS One 7, e30619. https://doi.org/10.1371/journal. pone.0030619.
  • Petric, M., Subotic, A., Trifunovic, M., Jevremovic, S., 2012. Morphogenesis in vitro of Fritillaria spp. Floriculture Ornamental Biotech 6, 78-89. http://www. globalsciencebooks.info/Online/GSBOnline/images/2012/FOB_6(SI1)/FOB_6(SI1) 78-89o.pdf.
  • Schaller, H., 2010. 1.21- sterol and steroid biosynthesis and metabolism in plants and microorganisms. Comprehensive Nat. Prod. II 1, 755-787. https://doi.org/10.1016/ B978-008045382-8.00008-3.
  • Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101-1108. https://doi.org/10.1038/nprot.2008.73.
  • Shitan, N., 2016. Secondary metabolites in plants: transport and self tolerance mechanisms. Biosci. Biotechnol. Biochem. 80, 1283-1293. https://doi.org/10.1080/ 09168451.2016.1151344.
  • Shih, Meng-Ling, Morgan, J.A., 2020. Metabolic flux analysis of secondary metabolism in plants. Metab. Eng. Commun. 10, e00123 https://doi.org/10.1016/j.mec.2020. e00123.
  • Singh, P., Singh, G., Bhandawat, A., Singh, G., Parmar, R., Seth, R., Sharma, R.K., 2017. Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Sci. Rep. 7, 45295. https://doi.org/10.1038/srep45295.
  • Su, P., Tong, Y., Cheng, Q., Hu, Y., Zhang, M., Yang, J., Teng, Z., Gao, W., Huang, L., 2016. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway. Sci. Rep. 6, 23057. https://doi.org/10.1038/srep23057.
  • Sun, C.S., Wang, D.Y., 1991. Fritillaries (Fritillary): in vitro culture and the regeneration of plants. In: Bajaj, Y.P.S. (Ed.), Biotechnology in Agriculture and Forestry: Medicinal and Aromatic Plants III, first ed., vol. XV. Springer, Berlin, Germany, pp. 258-269. https://doi.org/10.1007/978-3-642-84071-5_16.
  • Suzuki, M., Muranaka, T., 2007. Molecular genetics of plant sterol backbone synthesis. Lipids 42 (1), 47-54. https://doi.org/10.1007/s11745-006-1000-5.
  • Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., 2003. COG database: an updated version includes eukaryotes. BMC Bioinf. 4, 41. https://doi.org/ 10.1186/1471-2105-4-41.
  • Tauno, M., Jaak, V., 2015. Clustvis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, 566-570. https://doi.org/10.1093/nar/gkv468.
  • Tripathi, S., Jadaun, J.S., Chandra, M., Sangwan, N.S., 2016. Medicinal plant transcriptomes: the new gateways for accelerated understanding of plant secondary metabolism. Plant Genet. Resour. 14, 256-269. https://doi.org/10.1017/ S1479262116000162.
  • Ulug, B.V., Korkut, A.B., Sisman, E.E., Vuz, M., 2010. Research on propagation methods of Persian lily bulbs (Fritillaria persica Linn) with various vegetative techniques. Pakistan J. Bot. 42, 2785-2792. http://www.pakbs.org/pjbot/PDFs/42(4)/PJB42(4) 2785.pdf.
  • Vanisree, M., Lee, C.Y., Lo, S.F., Nalawade, S.M., Lin, C.Y., Tsay, H.S., 2004. Studies on the production of some important secondary metabolites from medicinal plants by tissue culture. Bot. Bull. Acad. Sin. 45, 1-22. https://doi.org/10.7016/ BBAS.200401.0001.
  • Vashisht, I., Pal, T., Sood, H., Chauhan, R.S., 2016. Comparative transcriptome analysis in different tissues of a medicinal herb, Picrorhiza kurroa pinpoints transcription factors regulating picrosides biosynthesis. Mol. Biol. Rep. 43, 1395-1409. https:// doi.org/10.1007/s11033-016-4073-0.
  • Ved, D.K., Goraya, G.S., 2008. Demand and Supply of Medicinal Plants in India. NMPB, New Delhi & FRLHT, Bangalore, India, ISBN 978-81-211-0628-3.
  • Wang, D., Chen, X., Atanasov, A.G., Yi, X., Wang, S., 2017. Plant resource availability of medicinal Fritillaria species in traditional producing regions in Qinghai-Tibet Plateau. Front. Pharmacol. 8, 502. https://doi.org/10.3389/fphar.2017.00502.
  • Wang, Q., Hillwig, M.L., Wu, Y., Peters, R.J., 2012. CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol. 158, 1418-1425. https://doi.org/10.1104/pp.111.187518.
  • Yamazaki, M., Rai, A., Yoshimoto, N., Saito, K., 2018. Perspective: functional genomics towards new biotechnology in medicinal plants. Plant Biotechnol. Rep. 12, 69-75. https://doi.org/10.1007/s11816-018-0476-9.
  • Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L., Shi, C., 2018. Wego 2.0: a web tool for analyzing and plotting GO annotations 2018 update. Nucleic Acids Res. 46, W71-W75. https://doi.org/10.1093/nar/gky400.
  • Zhao, Q., Li, R., Zhang, Y., Huang, K., Wang, W., Li, J., 2018. Transcriptome analysis reveals in vitro cultured regeneration bulbs as a promising source for targeted Fritillaria cirrhosa steroidal alkaloid biosynthesis. 3 Biotech 8, 191. https://doi.org/ 10.1007/s13205-018-1218-y.