Published January 31, 2021 | Version v1
Journal article Restricted

Probing of the plasticity of the active site in pinene synthase elucidates its potential evolutionary mechanism

Description

Xu, Jingwei, Peng, Guanzu, Xu, Jinkun, Li, Yi, Tong, Li, Yang, Dong (2021): Probing of the plasticity of the active site in pinene synthase elucidates its potential evolutionary mechanism. Phytochemistry (112573) 181: 1-10, DOI: 10.1016/j.phytochem.2020.112573, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112573

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

References

  • Ajikumar, P.K., Tyo, K., Carlsen, S., Mucha, O., Phon, T.H., Stephanopoulos, G., 2008. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol. Pharm. 5, 167-190.
  • Berendsen, H.J.C., Spoel, D.V.D., Drunen, R.V., 1995. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43-56.
  • Bohlmann, J., Meyer-Gauen, G., Croteau, R., 1998. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. U.S.A. 95, 4126-4133.
  • Christianson, D.W., 2006. Structure biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412-3442.
  • Christianson, D.W., 2007. Roots of biosynthetic diversity. Science 316, 60-61.
  • Copley, S.D., 2003. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7, 265-272.
  • Degenhardt, J., K¨ollner, T.G., Gershenzon, J., 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70, 1621-1637.
  • Gao, Y., Honzatko, R.B., Peters, R.J., 2012. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat. Prod. Rep. 29, 1153-1175.
  • Greenhagen, B.T., O' Maille, P.E., Noel, J.P., Chappell, J., 2006. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc. Natl. Acad. Sci. U.S.A. 103, 9826-9831.
  • Hall, D.E., Yuen, M.M., Jancsik, S., Quesada, A.L., Dullat, H.K., Li, M., Henderson, H., Arango-Velez, A., Liao, N.Y., Docking, R.T., Chan, S.K., Cooke, J.E., Breuil, C., Jones, S.J., Keeling, C.I., Bohlmann, J., 2013. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana). BMC Plant Biol. 13, 80.
  • Hyatt, D.C., Youn, B., Zhao, Y., Santhamma, B., Coates, R.M., Croteau, R.B., Kang, C., 2007. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc. Natl. Acad. Sci. U.S.A. 104, 5360-5365.
  • Katoh, S., Hyatt, D., Croteau, R., 2004. Altering product outcome in Abies grandis (-)-limonene synthase and (-)-limonene/(-)-alpha-pinene synthase by domain swapping and directed mutagenesis. Arch. Biochem. Biophys. 425, 65-76.
  • Keeling, C.I., Weisshaar, S., Lin, R.P.C., Bohlmann, J., 2008. Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc. Natl. Acad. Sci. U. S.A. 105, 1085-1090.
  • Kirby, J., Keasling, J.D., 2009. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol. 60, 335-355.
  • Lesburg, C.A., Zhai, G., Cane, D.E., Christianson, D.W., 1997. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820-1824.
  • Malde, A.K., Zuo, L., Breeze, M., et al., 2011. An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theor. Comput. 7, 4026-4037.
  • Martinez, L., 2015. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One 10, e0119264.
  • McKay, S.A., Hunter, W.L., Godard, K.A., Wang, S.X., Martin, D.M., Bohlmann, J., Plant, A.L., 2003. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiol. 133, 368-378.
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., 2009. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 16, 2785-2791.
  • Morrone, D., Xu, M., Fulton, D.B., Determan, M.K., Peters, R.J., 2008. Increasing complexity of a diterpene synthase reaction with a single residue switch. J. Am. Chem. Soc. 130, 5400-5401.
  • O' Brien, P.J., Herschlag, D., 1999. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91-R105.
  • O' Maille, P.E., Malone, A., Dellas, N., Hess Jr., B.A., Smentek, L., Sheehan, I., Greenhagen, B.T., Chappell, J., Manning, G., Noel, J.P., 2008. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat. Chem. Biol. 4, 617-623.
  • Oostenbrink, C., Villa, A., Mark, A.E., et al., 2010. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656-1676.
  • Pare, P.W., Tumlinson, J.H., 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325-331.
  • Phillips, M.A., Wildung, M.R., Williams, D.C., Hyatt, D.C., Croteau, R., 2003. cDNA isolation, functional expression, and characterization of (+)-alpha-pinene synthase and (-)-alpha-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynthesis. Arch. Biochem. Biophys. 411, 267-276.
  • Pyun, H.-J., Coates, R.M., Wagschal, K.C., McGeady, P., Croteau, R.B., 1993. Regiospecificity and isotope effects associated with the methy-methylene eliminations in the enzyme-catalyzed biosynthesis of (R) - and (S)-limonene. J. Org. Chem. 58, 3998-4009.
  • Schwab, W., Williams, D.C., Davis, E.M., Croteau, R., 2001. Mechanism of monoterpene cyclization: stereochemical aspects of the transformation of noncyclizable substrates analog by recombinant (-)-limonene synthase, (+)-bornyl diphosphate synthase, and (-)-pinene synthase. Arch. Biochem. Biophys. 392, 123-136.
  • Srividya, N., Davis, E.M., Croteau, R.B., Lange, B.M., 2015. Functional analysis of (4S)- limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase. Proc. Natl. Acad. Sci. U.S.A. 112, 3332-3337.
  • Starks, C.M., Back, K., Chappell, J., Noel, J., 1997. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815-1820.
  • Tholl, D., 2006. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9, 297-304.
  • Thorpe, I.F., Brooks III, C.L., 2007. Molecular evolution of affinity and flexibility in the immune system. Proc. Natl. Acad. Sci. U.S.A. 104, 8821-8826.
  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., Yamaguchi, S., 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195-200.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46 (W1), W296-W303.
  • Wilderman, P.R., Peters, R.J., 2007. A single residue switch converts abietadiene synthase into a pimaradienen specific cyclase. J. Am. Chem. Soc. 129, 15736-15737.
  • Williams, D.C., McGarvey, D.J., Katahira, E.J., Croteau, R., 1998. Truncation of limonene synthase preprotein provides a fully active 'pseudomature' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37, 12213-12220.
  • Wise, M.L., Savage, T.J., Katahira, E., Croteau, R., 1998. Monoterpene synthase from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273, 14891-14899.
  • Wise, M.L., Croteau, R., 1999. In: Cane, D.E. (Ed.), Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and Steroids, vol. 2. Elsevier Science, Oxford, UK, pp. 97-153.
  • Xu, M., Wilderman, P.R., Peters, R.J., 2007. Following evolution' s lead to a single residue switch for diterpene synthase product outcome. Proc. Natl. Acad. Sci. U.S.A. 104, 7397-7401.
  • Xu, J., Ai, Y., Wang, J., Xu, J., Zhang, Y., Yang, D., 2017. Converting S-limonene synthase to pinene and phellandrene synthases reveals the plasticity of the active site. Phytochemistry 137, 34-41.
  • Yoshikuni, Y., Ferrin, T.E., Keasling, J.D., 2006. Designed divergent evolution of enzyme function. Nature 440, 1078-1082.
  • Zerbe, P., Chiang, A., Bohlmann, J., 2012. Mutational analysis of white spruce (Picea glauca) ent-kaurene synthase (Pg KS) reveals common and distinct mechanisms of conifer diterpene synthases of general and specialized metabolism. Phytochemistry 74, 30-39.
  • Zhou, K., Peters, R.J., 2011. Electrostatic effects on (di) terpene synthase product outcome. Chem. Commun. 47, 4074-4080.