Published January 31, 2021
| Version v1
Journal article
Restricted
Recent advances in polyphenol oxidase-mediated plant stress responses
Creators
- 1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China & Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
Description
Zhang, Jin, Sun, Xiaoling (2021): Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry (112588) 181: 1-10, DOI: 10.1016/j.phytochem.2020.112588, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112588
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFC8DA4BFF92D23FFF86FFF6FE34FFF6
References
- Araji, S., Grammer, T.A., Gertzen, R., Anderson, S.D., Mikulic-Petkovsek, M., Veberic, R., Phu, M.L., Solar, A., Leslie, C.A., Dandekar, A.M., Escobar, M.A., 2014. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164, 1191-1203. https://doi.org/10.1104/ pp.113.228593.
- Aziz, E., Batool, R., Akhtar, W., Rehman, S., Gregersen, P.L., Mahmood, T., 2019. Expression analysis of the polyphenol oxidase gene in response to signaling molecules, herbivory and wounding in antisense transgenic tobacco plants. 3 Biotech 9, 55. https://doi.org/10.1007/s13205-019-1587-x.
- Barbehenn, R., Dukatz, C., Holt, C., Reese, A., Martiskainen, O., Salminen, J.P., Yip, L., Tran, L., Constabel, C.P., 2010. Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia 164, 993-1004. https://doi.org/10.1007/s00442-010-1733-y.
- Barbehenn, R.V., Jones, C.P., Yip, L., Tran, L., Constabel, C.P., 2007. Limited impact of elevated levels of polyphenol oxidase on tree-feeding caterpillars: assessing individual plant defenses with transgenic poplar. Oecologia 154, 129-140. https:// doi.org/10.1007/s00442-007-0822-z.
- Beecher, B., Skinner, D.Z., 2011. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels. J. Cereal. Sci. 53, 371-378. https://doi.org/10.1016/j.jcs.2011.01.015.
- Bhonwong, A., Stout, M.J., Attajarusit, J., Tantasawat, P., 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (helicoverpa armigera) and beet armyworm (spodoptera exigua). J. Chem. Ecol. 35, 28-38. https://doi.org/10.1007/ s10886-008-9571-7.
- Bittner, S., 2006. When quinones meet amino acids: chemical, physical and biological consequences. Amino Acids 30, 205-224. https://doi.org/10.1007/s00726-005- 0298-2.
- Boss, P.K., Gardner, R.C., Janssen, B.J., Ross, G.S., 1995. An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Plant Mol. Biol. 27, 429-433. https://doi. org/10.1007/BF00020197.
- Bucheli, C.S., Dry, I.B., Robinson, S.P., 1996. Isolation of a full-length cDNA encoding polyphenol oxidase from sugarcane, a C4 grass. Plant Mol. Biol. 31, 1233-1238. https://doi.org/10.1007/BF00040840.
- Cai, X., Davis, E.J., Ballif, J., Liang, M., Bushman, E., Haroldsen, V., Torabinejad, J., Wu, Y., 2006. Mutant identification and characterization of the laccase gene family in Arabidopsis. J. Exp. Bot. 57, 2563-2569. https://doi.org/10.1093/jxb/erl022.
- Cai, Y., Dong, Z., Zhao, S., Han, Y., Shao, Y., Lu, M., Qin, H., Liu, X., Wang, D., Chen, Y., 2013. Genome-wide analysis of polyphenol oxidase genes and their transcriptional patterns during grain development in sorghum. Int. J. Plant Sci. 174, 710-721. https://doi.org/10.1086/669909.
- Castanera t, P., Steffens, J.C., Tingey, W.M., 1996. Biological performance of Colorado potato beetle larvae on potato genotypes with differing levels of polyphenol oxidase. J. Chem. Ecol. 22, 91-101. https://doi.org/10.1007/BF02040202.
- Chai, C., Lin, Y., Shen, D., Wu, Y., Li, H., Dou, D., 2013. Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression. PloS One 8, e67670. https://doi.org/10.1371/journal. pone.0067670.
- Chandrasekaran, M., Chun, S.C., 2016. Expression of PR-protein genes and induction of defense-related enzymes by Bacillus subtilis CBR05 in tomato (Solanum lycopersicum) plants challenged with Erwinia carotovora subsp. carotovora. Biosci. Biotechnol. Biochem. 80, 2277-2283. https://doi.org/10.1080/09168451.2016.1206811.
- Chen, C., BĀ“elanger, R.R., Benhamou, N., Paulitz, T.C., 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plant Pathol. 56, 13-23. https://doi.org/ 10.1006/pmpp.1999.0243.
- Chen, D., Shao, M., Sun, S., Liu, T., Zhang, H., Qin, N., Zeng, R., Song, Y., 2019. Enhancement of jasmonate-mediated antiherbivore defense responses in tomato by acetic acid, a potent inducer for plant protection. Front. Plant Sci. 10, 764. https:// doi.org/10.3389/fpls.2019.00764.
- Chen, X., Yang, B., Huang, W., Wang, T., Li, Y., Zhong, Z., Yang, L., Li, S., Tian, J., 2018. Comparative proteomic analysis reveals elevated capacity for photosynthesis in polyphenol oxidase expression-silenced clematis terniflora Dc. Leaves. Int. J. Mol. Sci. 19, 3897. https://doi.org/10.3390/ijms19123897.
- Constabel, C.P., Barbehenn, R., 2008. Defensive roles of polyphenol oxidase in plants. In: Schaller, A. (Ed.), Induced Plant Resistance to Herbivory. Springer, Netherlands, pp. 253-270. https://doi.org/10.1007/978-1-4020-8182-8.
- Constabel, C.P., Bergey, D.R., Ryan, C.A., 1995. Systemin activates synthesis of woundinducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 92, 407-411. https://doi.org/10.1073/ pnas.92.2.407.
- Constabel, C.P., Ryan, C.A., 1998. A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47, 507-511. https://doi. org/10.1016/S0031-9422(97)00539-6.
- Constabel, C.P., Yip, L., Patton, J.J., Christopher, M.E., 2000. Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124, 285-295. https://doi.org/10.1104/pp.124.1.285.
- De Grassi, A., Lanave, C., Saccone, C., 2008. Genome duplication and gene-family evolution: the case of three OXPHOS gene families. Gene. https://doi.org/10.1016/j. gene.2008.05.011.
- Demeke, T., Morris, C.F., 2002. Molecular characterization of wheat polyphenol oxidase (PPO). Theor. Appl. Genet. 104, 813-818. https://doi.org/10.1007/s00122-001- 0847-3.
- Deng, J., Li, F., Duan, T.Y., 2020. Claroideoglomus etunicatum reduces leaf spot incidence and improves drought stress resistance in perennial ryegrass. Australas. Plant Pathol. 49, 147-157. https://doi.org/10.1007/s13313-020-00685-w.
- Dong, C., Yu, A.Q., Yang, M.G., Zhou, M.Q., Hu, Z.L., 2016. Molecular and characterization of NnPPO cDNA from lotus (Nelumbo nucifera) in rhizome browning. Cell. Mol. Biol. 62, 67-72. https://doi.org/10.14715/cmb/2016.62.4.13.
- Erb, M., Reymond, P., 2019. Molecular interactions between plants and insect herbivores. Annu. Rev. Plant Biol. 70, 527-557. https://doi.org/10.1146/annurevarplant-050718-095910.
- Escobar, M.A., Shilling, A., Higgins, P., Uratsu, S.L., Dandekar, A.M., 2008. Characterization of polyphenol oxidase from walnut. J. Am. Soc. Hortic. Sci. 133, 852-858. https://doi.org/10.21273/jashs.133.6.852.
- Felton, G.W., Donato, K., Delvecchio, R.J., Duffey, S.S., 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15, 2667-2694. https://doi.org/10.1007/BF01014725.
- Felton, G.W., Duffey, S.S., 1992. Avoidance of antinutritive plant defense: role of midgut pH in Colorado potato beetle. J. Chem. Ecol. 18, 571-583. https://doi.org/10.1007/ BF00987820.
- Gandia-Herrero, F., JimĀ“enez, M., Cabanes, J., Garcia-Carmona, F., Escribano, J., 2003. Tyrosinase inhibitory activity of cucumber compounds: enzymes responsible for browning in cucumber. J. Agric. Food Chem. 51, 7764-7769. https://doi.org/ 10.1021/jf030131u.
- Goldman, M.H.S., Seurinck, J., Marins, M., Goldman, G.H., Mariani, C., 1998. A tobacco flower-specific gene encodes a polyphenol oxidase. Plant Mol. Biol. 36, 479-485. https://doi.org/10.1023/A:1005914918284.
- Gooding, P.S., Bird, C., Robinson, S.P., 2001. Molecular cloning and characterisation of banana fruit polyphenol oxidase. Planta 213, 748-757. https://doi.org/10.1007/ s004250100553.
- Guo, J., Guo, J., He, K., Bai, S., Zhang, T., Zhao, J., Wang, Z., 2017. Physiological responses induced by Ostrinia furnacalis (Lepidoptera: crambidae) feeding in maize and their effects on O. furnacalis performance. J. Econ. Entomol. 110, 739-747. https://doi.org/10.1093/jee/tox060.
- Harrach, B.D., Baltruschat, H., Barna, B., Fodor, J., Kogel, K.H., 2013. The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol. Plant Microbe Interact. 26, 599-605. https://doi.org/10.1094/MPMI-09-12-0216-R.
- Haruta, M., Murata, M., Hiraide, A., Kadokura, H., Yamasaki, M., Sakuta, M., Shimizu, S., Kadokura, H., 1998. Cloning genomic DNA encoding apple polyphenol oxidase and comparison of the gene product in escherichia coli and in apple. Biosci. Biotechnol. Biochem. 62, 358-362. https://doi.org/10.1271/bbb.62.358.
- Huang, C., Zhang, J., Zhang, X., Yu, Y., Bian, W., Zeng, Z., Sun, X., Li, X., 2018. Two new polyphenol oxidase genes of tea plant (Camellia sinensis) respond differentially to the regurgitant of tea geometrid, ectropis obliqua. Int. J. Mol. Sci. 19, 2414. https://doi. org/10.3390/ijms19082414.
- Hunt, M.D., Eannetta, N.T., Yu, H., Newman, S.M., Steffens, J.C., 1993. cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biol. 2, 59-68. https://doi. org/10.1007/BF00039618.
- Inbaraj, J.J., Chignell, C.F., 2004. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol. 17, 55-62. https://doi.org/10.1021/tx034132s.
- Jain, S., Vaishnav, A., Kumari, S., Varma, A., Tuteja, N., Choudhary, D.K., 2017. Chitinolytic Bacillus -mediated induction of jasmonic acid and defense-related proteins in soybean (Glycine max L. Merrill) plant against Rhizoctonia solani and Fusarium oxysporum. J. Plant Growth Regul. 36, 200-214. https://doi.org/10.1007/ s00344-016-9630-1.
- Jia, H., Zhao, P., Wang, B., Tariq, P., Zhao, F., Zhao, M., Wang, Q., Yang, T., Fang, J., 2016. Overexpression of polyphenol oxidase gene in strawberry fruit delays the fungus infection process. Plant Mol. Biol. Rep. 34, 592-606. https://doi.org/ 10.1007/s11105-015-0946-y.
- Jiang, S., Han, S., He, D., Cao, G., Fang, K., Xiao, X., Yi, J., Wan, X., 2019. The accumulation of phenolic compounds and increased activities of related enzymes contribute to early defense against walnut blight. Physiol. Mol. Plant Pathol. 108, 101433. https://doi.org/10.1016/j.pmpp.2019.101433.
- Jukanti, A.K., Bhatt, R., 2015. Eggplant (Solanum melongena L.) polyphenol oxidase multi-gene family: a phylogenetic evaluation. 3 Biotech 5, 93-99. https://doi.org/ 10.1007/s13205-014-0195-z.
- Parnell, L., Preston, R., Marra, M., McCombie, W.R., Chen, E., Martienssen, R., Mayer, K., Lemcke, K., Haas, B., Haase, D., Rudd, S., Schoof, H., Frishman, D., Morgenstern, B., Zaccaria, P., Mewes, H.W., White, O., Creasy, T.H., Bielke, C., Maiti, R., Peterson, J., Ermolaeva, M., Pertea, M., Quackenbush, J., Volfovsky, N., Wu, D., Salzberg, S.L., Bevan, M., Lowe, T.M., Rounsley, S., Bush, D., Subramaniam, S., Levin, I., Norris, S., Schmidt, R., Acarkan, A., Bancroft, I., Brennicke, A., Eisen, J.A., Bureau, T., Legault, B.A., Le, Q.H., Agrawal, N., Yu, Z., Copenhaver, G.P., Luo, S., Preuss, D., Pikaard, C.S., Paulsen, I.T., Sussman, M., Britt, A.B., Selinger, D.A., Pandey, R., Chandler, V.L., Jorgensen, R.A., Mount, D.W., Pikaard, C., Juergens, G., Meyerowitz, E.M., Dangl, J., Jones, J.D.G., Chen, M., Chory, J., Somerville, C., 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815. https://doi.org/10.1038/ 35048692.
- Khodadadi, F., Tohidfar, M., Vahdati, K., Dandekar, A.M., Leslie, C.A., 2020. Functional analysis of walnut polyphenol oxidase gene (JrPPO1) in transgenic tobacco plants and PPO induction in response to walnut bacterial blight. Plant Pathol. 69, 756-764. https://doi.org/10.1111/ppa.13159.
- Kim, J.Y., Seo, Y.S., Kim, J.E., Sung, S.K., Song, K.J., An, G., Kim, W.T., 2001. Two polyphenol oxidases are differentially expressed during vegetative and reproductive development and in response to wounding in the Fuji apple. Plant Sci. 161, 1145-1152. https://doi.org/10.1016/S0168-9452(01)00522-2.
- Koc, E., Islek Ė, C., Kasko Arici, Y., 2017. Spermine and its interaction with proline induce resistance to the root rot pathogen Phytophthora capsici in pepper (Capsicum annuum). Hortic. Environ. Biotechnol 58, 254-267. https://doi.org/10.1007/ s13580-017-1075-3.
- Kruszka, K., Pacak, A., Swida-Barteczka, A., Stefaniak, A.K., Kaja, E., Sierocka, I., Karlowski, W., Jarmolowski, A., Szweykowska-Kulinska, Z., 2013. Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genom. 14, 34. https://doi.org/10.1186/1471-2164-14-34.
- Li, C., Li, D., Li, J., Shao, F., Lu, S., 2017. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPO s in Salvia miltiorrhiza. Sci. Rep. 7, 44622. https://doi.org/10.1038/srep44622.
- Li, D., Deng, Z., Liu, C., Zhao, M., Guo, H., Xia, Z., Liu, H., 2014. Molecular cloning, expression profiles, and characterization of a novel polyphenol oxidase (PPO) gene in Hevea brasiliensis. Biosci. Biotechnol. Biochem. 78, 1648-1655. https://doi.org/ 10.1080/09168451.2014.940828.
- Li, L., Steffens, J.C., 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239-247. https:// doi.org/10.1007/s00425-002-0750-4.
- Liao, Y., Yu, Z., Liu, X., Zeng, L., Cheng, S., Li, J., Tang, J., Yang, Z., 2019. Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves. J. Agric. Food Chem. 67, 6716-6724. https://doi. org/10.1021/acs.jafc.9b01854.
- Lin, Y.B., Sun, Z.X., Li, Z.F., Xue, R.R., Cui, W.K., Sun, S.Z., Liu, T.T., Zeng, R.S., Song, Y. Y., 2019. Deficiency in silicon transporter Lsi1 compromises inducibility of anti-herbivore defense in rice plants. Front. Plant Sci. 10, 652. https://doi.org/10.3389/ fpls.2019.00652.
- Liu, D., Meng, S., Xiang, Z., Yang, G., He, N., 2019. An R1R2R3 MYB transcription factor, MNMYB3R1, regulates the polyphenol oxidase gene in mulberry (Morus notabilis). Int. J. Mol. Sci. 20, 2602. https://doi.org/10.3390/ijms20102602.
- Lomate, P.R., Jadhav, B.R., Giri, A.P., Hivrale, V.K., 2013. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase. PloS One 8, e74889. https://doi.org/10.1371/journal. pone.0074889.
- Lu, S., Sun, Y.H., Chiang, V.L., 2008. Stress-responsive microRNAs in Populus. Plant J. 55, 131-151. https://doi.org/10.1111/j.1365-313X.2008.03497.x.
- Lu, S., Sun, Y.H., Shi, R., Clark, C., Li, L., Chiang, V.L., 2005. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17, 2186-2203. https://doi.org/10.1105/tpc.105.033456.
- Mahanil, S., Attajarusit, J., Stout, M.J., Thipyapong, P., 2008. Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Sci. 174, 456-466. https://doi.org/10.1016/j.plantsci.2008.01.006.
- Massa, A.N., Beecher, B., Morris, C.F., 2007. Polyphenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family. Theor. Appl. Genet. 114, 1239-1247. https://doi.org/10.1007/s00122-007-0514-4.
- Mayer, A.M., 2006. Polyphenol oxidases in plants and fungi: going places? a review. Phytochemistry 67, 2318-2331. https://doi.org/10.1016/j. phytochem.2006.08.006.
- Mishra, B.B., Gautam, S., 2016. Polyphenol oxidases: biochemical and molecular characterization, distribution, role and its control. Enzyme Eng. 141. https://doi. org/10.4172/2329-6674.1000141, 05.
- Mohammadi, M., Kazemi, H., 2002. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 162, 491-498. https://doi.org/ 10.1016/S0168-9452(01)00538-6.
- Narendra Babu, A., Jogaiah, S., Ito, S. ichi, Kestur Nagaraj, A., Tran, L.S.P., 2015. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 231, 62-73. https://doi.org/10.1016/j.plantsci.2014.11.006.
- Newman, S.M., Tantasawat, P., Steffens, J.C., 2011. Tomato polyphenol oxidase B is spatially and temporally regulated during development and in response to ethylene. Molecules 16, 493-517. https://doi.org/10.3390/molecules16010493.
- Niranjan Raj, S., Sarosh, B.R., Shetty, H.S., 2006. Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Funct. Plant Biol. 33, 563-571. https://doi.org/ 10.1071/FP06003.
- Nishimura, M., Fukuda, C., Murata, M., Homma, S., 2003. Cloning and some properties of Japanese pear (Pyrus pyrifolia) polyphenol oxidase, and changes in browning potential during fruit maturation. J. Sci. Food Agric. 83, 1156-1162. https://doi. org/10.1002/jsfa.1518.
- Olmedo, P., Moreno, A.A., Sanhueza, D., Balic, I., Silva-Sanzana, C., Zepeda, B., Verdonk, J.C., Arriagada, C., Meneses, C., Campos-Vargas, R., 2018. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus. Plant Sci. 266, 46-54. https://doi.org/10.1016/j.plantsci.2017.10.012.
- Ono, E., Hatayama, M., Isono, Y., Sato, T., Watanabe, R., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Tanaka, Y., Kusumi, T., Nishino, T., Nakayama, T., 2006. Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J. 45, 133-143. https://doi.org/10.1111/j.1365-313X.2005.02625.x.
- Pan, Q., Shikano, I., Hoover, K., Liu, T.X., Felton, G.W., 2019. Pathogen-mediated tritrophic interactions: baculovirus-challenged caterpillars induce higher plant defenses than healthy caterpillars. J. Chem. Ecol. 45, 515-524. https://doi.org/ 10.1007/s10886-019-01077-1.
- Prieto, H., Utz, D., Castro, A Ā“., Aguirre, C., GonzĀ“alez-Aguero, M., ValdĀ“es, H., Cifuentes, N., Defilippi, B.G., Zamora, P., Zutniga, G., Campos-Vargas, R., 2007. Browning in Annona cherimola fruit: role of polyphenol oxidase and characterization of a coding sequence of the enzyme. J. Agric. Food Chem. 55, 9208-9218. https://doi.org/ 10.1021/jf070586+.
- Qi, J., Li, G.Q., Dong, Z., Zhou, W., 2016. Transformation of tobacco plants by Yali PPO- GFP fusion gene and observation of subcellular localization. Am. J. Transl. Res. 8, 698-704.
- Quarta, A., Mita, G., Durante, M., Arlorio, M., De Paolis, A., 2013. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads. Plant Physiol. Biochem. 68, 52-60. https://doi.org/10.1016/j. plaphy.2013.03.020.
- Reinkensmeier, A., Steinbrenner, K., Homann, T., Bussler, S., Rohn, S., Rawel, H.M., 2016. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds. Food Chem. 194, 76-85. https://doi.org/10.1016/ j.foodchem.2015.07.145.
- Ren, G., Wang, B., Zhu, X., Mu, Q., Wang, C., Tao, R., Fang, J., 2014. Cloning, expression, and characterization of miR058 and its target PPO during the development of grapevine berry stone. Gene 548, 166-173. https://doi.org/10.1016/j. gene.2014.07.021.
- Richter, C., Dirks, M.E., Gronover, C.S., Prufer, D., Moerschbacher, B.M., 2012. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato. Mol. Plant-Microbe Interact. 25, 200-210. https:// doi.org/10.1094/MPMI-04-11-0082.
- Ruiz-Ferrer, V., Voinnet, O., 2009. Roles of plant small RNAs in biotic stress responses. Annu. Rev. Plant Biol. 60, 485-510. https://doi.org/10.1146/annurev. arplant.043008.092111.
- Salla, T.D., Astarita, L.V., SantarĀ“em, E.R., 2016. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea. Planta 243, 1055-1070. https://doi.org/10.1007/s00425-015-2460-8.
- Sang, S., Li, S., Fan, W., Wang, N., Gao, M., Wang, Z., 2019. Zinc thiazole enhances defense enzyme activities and increases pathogen resistance to Ralstonia solanacearum in peanut (Arachis hypogaea) under salt stress. PloS One 14, e0226951. https://doi.org/10.1371/journal.pone.0226951.
- Sathiyabama, M., Bernstein, N., Anusuya, S., 2016. Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind. Crop. Prod. 89, 87-94. https://doi.org/10.1016/j. indcrop.2016.05.007.
- Schuman, M.C., Baldwin, I.T., 2016. The layers of plant responses to insect herbivores. Annu. Rev. Entomol. 61, 373-394. https://doi.org/10.1146/annurev-ento-010715- 023851.
- Senthilraja, G., Anand, T., Kennedy, J.S., Raguchander, T., Samiyappan, R., 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol. Mol. Plant Pathol. 82, 10-19. https://doi.org/10.1016/j. pmpp.2012.12.002.
- Shetty, S.M., Chandrashekar, A., Venkatesh, Y.P., 2011. Eggplant polyphenol oxidase multigene family: cloning, phylogeny, expression analyses and immunolocalization in response to wounding. Phytochemistry 72, 2275-2287. https://doi.org/10.1016/ j.phytochem.2011.08.028.
- Stewart, R., Sawyer, B., Bucheli, C.S., Robinson, S.P., 2001. Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust. J. Plant Physiol. 28, 181-191. https://doi.org/10.1071/pp00094.
- Sullivan, M.L., 2015. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism. Front. Plant Sci. 5, 1-7. https://doi.org/10.3389/fpls.2014.00783.
- Taketa, S., Matsuki, K., Amano, S., Saisho, D., Himi, E., Shitsukawa, N., Yuo, T., Noda, K., Takeda, K., 2010. Duplicate polyphenol oxidase genes on barley chromosome 2H and their functional differentiation in the phenol reaction of spikes and grains. J. Exp. Bot. 61, 3983-3993. https://doi.org/10.1093/jxb/erq211.
- Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M.M., Pavan, S., Montemurro, C., 2017. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int. J. Mol. Sci. 18, 377. https://doi.org/10.3390/ijms18020377.
- Thipyapong, P., Hunt, M.D., Steffens, J.C., 2004. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220, 105-117. https://doi.org/10.1007/s00425-004-1330-6.
- Thipyapong, P., Steffens, J.C., 1997. Tomato polyphenol oxidase. Differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiol 115, 409-418. https://doi.org/10.1104/pp.115.2.409.
- Thipyapong, P., Stout, M.J., Attajarusit, J., 2007. Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12, 1569-1595. https://doi.org/ 10.3390/12081569.
- Thygesen, P.W., Dry, I.B., Robinson, S.P., 1995. Polyphenol oxidase in potato: a multigene family that exhibits differential expression patterns. Plant Physiol 109, 525-531. https://doi.org/10.1104/pp.109.2.525.
- Tran, L.T., Constabel, C.P., 2011. The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform. Planta 234, 799-813. https://doi.org/10.1007/s00425-011-1441-9.
- Tran, L.T., Taylor, J.S., Constabel, C.P., 2012. The polyphenol oxidase gene family in land plants: lineage-specific duplication and expansion. BMC Genom. 13, 395. https://doi.org/10.1186/1471-2164-13-395.
- Ullah, C., Tsai, C.J., Unsicker, S.B., Xue, L., Reichelt, M., Gershenzon, J., Hammerbacher, A., 2019. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytol. 221, 960-975. https://doi.org/ 10.1111/nph.15396.
- Van Wees, S.C., Van der Ent, S., Pieterse, C.M., 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443-448. https://doi.org/ 10.1016/j.pbi.2008.05.005.
- Wang, J., Constabel, C.P., 2004. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220, 87-96. https://doi.org/10.1007/s00425-004-1327-1.
- Wang, J., Peiffer, M., Hoover, K., Rosa, C., Zeng, R., Felton, G.W., 2017. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). New Phytol. 214, 1294-1306. https://doi.org/10.1111/nph.14429. Winters, A., Heywood, S., Farrar, K., Donnison, I., Thomas, A., Webb, K.J., 2009. Identification of an extensive gene cluster among a family of PPOs in Trifolium pratense L. (red clover) using a large insert BAC library. BMC Plant Biol. 9 https:// doi.org/10.1186/1471-2229-9-94.
- Xin, Z., Cai, X., Chen, S., Luo, Z., Bian, L., Li, Z., 2019. A disease resistance elicitor laminarin enhances tea defense against a piercing herbivore Empoasca ( Matsumurasca ) onukii Matsuda. Sci. Rep. 9, 814. https://doi.org/10.1038/s41598- 018-37424-7.
- Yang, Z.W., Duan, X.N., Jin, S., Li, X.W., Chen, Z.M., Ren, B.Z., Sun, X.L., 2013. Regurgitant derived from the tea geometrid ectropis obliqua suppresses woundinduced polyphenol oxidases activity in tea plants. J. Chem. Ecol. 39, 744-751. https://doi.org/10.1007/s10886-013-0296-x.
- Yu, Y., Tang, T., Qian, Q., Wang, Y., Yan, M., Zeng, D., Han, B., Wu, C.I., Shi, S., Li, J., 2008. Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell 20, 2946-2959. https://doi.org/10.1105/tpc.109.210360.
- Yu, Z., Liao, Y., Zeng, L., Dong, F., Watanabe, N., Yang, Z., 2020. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment. Food Res. Int. 129, 108842. https:// doi.org/10.1016/j.foodres.2019.108842.
- Yu, Z.H., Han, Y.N., Xiao, X.G., 2015. A PPO promoter from betalain-producing red swiss chard, directs petiole- and root-preferential expression of foreign gene in anthocyanins-producing plants. Int. J. Mol. Sci. 16, 27032-27043. https://doi.org/ 10.3390/ijms161126011.
- Zhang, H., Tian, X., Gao, W., Cai, Y., Long, L., 2017. Genome-wide identification of PPO gene family members and their response to Verticillium dahliae in upland cotton. Cott. Sci. 29, 428-436. https://doi.org/10.11963/1002-7807.zhll.20170727.
- Zhang, J., Zhang, X., Ye, M., Li, X.W., Lin, S.B., Sun, X.L., 2020. The jasmonic acid pathway positively regulates the polyphenol oxidase-based defense against tea geometrid caterpillars in the tea plant (Camellia sinensis). J. Chem. Ecol. 46, 308-316. https://doi.org/10.1007/s10886-020-01158-6.
- Zhou, Y., O' Hare, T.J., Jobin-Decor, M., Underhill, S.J.R., Wills, R.B.H., Graham, M.W., 2003. Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnol. J. 1, 463-478. https://doi.org/ 10.1046/j.1467-7652.2003.00042.x.
- Zhu, H., Chen, C., Zeng, J., Yun, Z., Liu, Y., Qu, H., Jiang, Y., Duan, X., Xia, R., 2020. MicroRNA528, a hub regulator modulating ROS homeostasis via targeting of a diverse set of genes encoding copper-containing proteins in monocots. New Phytol. 225, 385-399. https://doi.org/10.1111/nph.16130.