Published August 30, 2023 | Version CC BY-NC-ND 4.0
Journal article Open

Design, CFD Simulation, Prototype, and Experimental Investigation of Indirect Active Solar Dryer for Banana

  • 1. Department of Mechanical Engineering, Addis Ababa Science and Technology University, Ethiopia.

Contributors

Contact person:

  • 1. Department of Mechanical Engineering, Addis Ababa Science and Technology University, Ethiopia

Description

Abstract: Indirect active tray solar dryer was designed, CFD simulated, and constructed for the drying of banana in Addis Ababa, Ethiopia. The experimental investigation was done after the CFD ANSYS Fluent simulation of different parameters based on the uniformity temperature and air flow distributions on the symmetry plane. The performance of the designed solar dryer was compared with that of the open sun dryer method, based on drying rate, moisture ratio, and moisture content on a wet and dry basis. From fourteen different mathematical drying thin layer kinetics models, the maximum correlation coefficient of 0.999574, the minimum root mean square of 0.0001352, and the minimum reduced chi-square of 0.007353 were obtained for the Verma et al. model for the slice banana in the designed active solar dryer. Recycling the air from the outlet of the drying chamber on the first day is not possible because the quality of the air is lower when compared with ambient air. The outlet air temperature and relative humidity of the drying chamber were 4.39℃ higher and 8.24% lower than the ambient air temperature and relative humidity respectively, so it is possible to recycle the air after the first day. The average moisture content removed from the product in the designed solar dryer and open sun dryer was 68.01% and 51.01%, respectively, in the 22 and half5 drying hour. The difference between the maximum and minimum moisture removal was 4.47%. It indicates there is a uniform drying in the designed solar dryer. The overall solar air collector efficiency was 33.80%and the maximum drying efficiency was 31.10 %.

Notes

Published By: Lattice Science Publication (LSP) © Copyright: All rights reserved.

Files

H96670712823.pdf

Files (1.4 MB)

Name Size Download all
md5:7253be18c1816f72b2a219496ea2b778
1.4 MB Preview Download

Additional details

Related works

Is cited by
Journal article: 2582-8029 (ISSN)

References

  • V. Belessiotis and E. Delyannis, "Solar drying," Sol. Energy, vol. 85, no. 8, pp. 1665–1691, 2011, doi: 10.1016/j.solener.2009.10.001.
  • A. Tiwari, "A Review on Solar Drying of Agricultural Produce," Food Process. Technol., vol. 7, no. 9, 2016, doi: 10.4172/2157-7110.1000623.
  • V. P. Chandramohan, "Experimental Analysis and Simultaneous Heat and Moisture Transfer with Coupled CFD Model for Convective Drying of Moist Object," Int. J. Comput. Methods Eng. Sci. Mech., vol. 17, no. 1, pp. 59–71, 2016, doi: 10.1080/15502287.2016.1147506.
  • A. Sharma, C. R. Chen, and N. Vu Lan, "Solar-energy drying systems: A review," Renew. Sustain. Energy Rev., vol. 13, no. 6–7, pp. 1185–1210, 2009, doi: 10.1016/j.rser.2008.08.015.
  • P. Raturi, V. Panwar, and S. Singh, "Characterization of banana peel ionic polymer membrane by using polynomial regression," Mater. Today Proc., no. xxxx, pp. 1–3, 2021, doi: 10.1016/j.matpr.2021.01.719.
  • V. N. Hegde, V. S. Hosur, S. K. Rathod, P. A. Harsoor, and K. B. Narayana, "Design, fabrication and performance evaluation of solar dryer for banana," Energy. Sustain. Soc., 2015, doi: 10.1186/s13705-015-0052-x.
  • E. Getahun, M. A. Delele, N. Gabbiye, S. W. Fanta, P. Demissie, and M. Vanierschot, "Importance of integrated CFD and product quality modeling of solar dryers for fruits and vegetables : A review," Sol. Energy, vol. 220, no. March, pp. 88–110, 2021, doi: 10.1016/j.solener.2021.03.049.
  • S. Tiwari and G. N. Tiwari, "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, vol. 128, no. 2017, pp. 183–195, 2017, doi: 10.1016/j.energy.2017.04.022.
  • Y. M. Yunus and H. H. Al-Kayiem, "Simulation of Hybrid Solar Dryer Simulation of Hybrid Solar Dryer," 2013 IOP Conf. Ser. Earth Env., 2013, doi: 10.1088/1755-1315/16/1/012143.
  • A. Mellalou, W. Riad, S. K. Hnawi, A. Tchenka, A. Bacaoui, and A. Outzourhit, "Experimental and CFD Investigation of a Modified Uneven-Span Greenhouse Solar Dryer in No-Load Conditions under Natural Convection Mode," Int. J. Photoenergy, vol. 2021, 2021, doi: https://doi.org/10.1155/2021/9918166 Research.
  • M. Iranmanesh, H. Samimi Akhijahani, and M. S. Barghi Jahromi, "CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system," Renew. Energy, vol. 145, no. 2020, pp. 1192–1213, 2019, doi: 10.1016/j.renene.2019.06.038.
  • Y. Amanlou and A. Zomorodian, "Applying CFD for designing a new fruit cabinet dryer," J. Food Eng., vol. 101, no. 1, pp. 8–15, 2010, doi: 10.1016/j.jfoodeng.2010.06.001.
  • M. Vivekanandan, K. Periasamy, C. D. Babu, G. Selvakumar, and R. Arivazhagan, "Experimental and CFD investigation of six shapes of solar greenhouse dryer in no load conditions to identify the ideal shape of dryer," Mater. Today Proc., vol. 37, no. Part 2, pp. 1409–1416, 2020, doi: 10.1016/j.matpr.2020.07.062.
  • O. Prakash, V. Laguri, A. Pandey, A. Kumar, and A. Kumar, "Review on various modelling techniques for the solar dryers," Renew. Sustain. Energy Rev., vol. 62, pp. 396–417, 2016, doi: 10.1016/j.rser.2016.04.028.
  • A. K. Babu, G. Kumaresan, V. Antony Aroul Raj, and R. Velraj, "CFD studies on different configurations of drying chamber for thin-layer drying of leaves," Energy Sources, Part A Recover. Util. Environ. Eff., vol. 42, no. 18, pp. 2227–2239, 2020, doi: 10.1080/15567036.2019.1607935.
  • A. Ghaffari and R. Mehdipour, "Modeling and Improving the Performance of Cabinet Solar Dryer Using Computational Fluid Dynamics," Int. J. Food Eng., vol. 11, no. 2, pp. 157–172, 2015, doi: 10.1515/ijfe-2014-0266.
  • A. Ghazanfari, L. Tabil, and S. Sokhansanj, "Evaluating a solar dryer for in-shell drying of split pistachio nuts," Dry. Technol., vol. 21, no. 7, pp. 1357–1368, 2003, doi: 10.1081/DRT-120023183.
  • A. Umayal Sundari, P. Neelamegam, and C. V. Subramanian, "An Experimental Study and Analysis on Solar Drying of Bitter Gourd Using an Evacuated Tube Air Collector in Thanjavur, Tamil Nadu, India," Conf. Pap. Energy, vol. 2013, pp. 1–4, 2013, doi: 10.1155/2013/125628.
  • H. Schütz, M. Jansen, and M. A. Verhoff, "Vom alkohol zum liquid ecstasy (GHB) - Ein überblick über alte und moderne K.-o.-Mittel - Teil 3: γ-Hydroxybuttersäure (GHB, 'liquid ecstasy')," Archiv fur Kriminologie, vol. 228, no. 5–6, pp. 151–159, 2011.
  • W. Aissa, M. El-Sallak, and A. Elhakem, "Performance of solar dryer chamber used for convective drying of sponge-cotton," Therm. Sci., vol. 18, no. SUPPL.2, pp. 451–462, 2014, doi: 10.2298/TSCI110710084A.
  • K. R. Arun, M. Srinivas, C. A. Saleel, and S. Jayaraj, "Active drying of unripened bananas (Musa Nendra) in a multi-tray mixed-mode solar cabinet dryer with backup energy storage," Sol. Energy, vol. 188, no. 2019, pp. 1002–1012, 2019, doi: 10.1016/j.solener.2019.07.001.
  • M. Kumar, S. K. Sansaniwal, and P. Khatak, "Progress in solar dryers for drying various commodities," Renew. Sustain. Energy Rev., vol. 55, pp. 346–360, 2016, doi: 10.1016/j.rser.2015.10.158.
  • P. Mehta, S. Samaddar, P. Patel, B. Markam, and S. Maiti, "Design and performance analysis of a mixed mode tent-type solar dryer for fi sh-drying in coastal areas," Sol. Energy, vol. 170, pp. 671–681, 2018, doi: 10.1016/j.solener.2018.05.095.
  • I. Farkas, I. Seres, and C. Mészáros, "Analytical and experimental study of a modular solar dryer," Renew. Energy, vol. 16, pp. 773–778, 1999, doi: 10.1016/S0960-1481(98)00278-X.
  • R. Poblete, E. Cortes, J. Macchiavello, and J. Bakit, "Factors influencing solar drying performance of the red algae Gracilaria chilensis," Renew. Energy, vol. 126, pp. 978–986, 2018, doi: 10.1016/j.renene.2018.04.042.
  • S. Misha, S. Mat, M. H. Ruslan, K. Sopian, and E. Salleh, "The Prediction of Drying Uniformity in Tray Dryer System using CFD Simulation," vol. 3, no. 5, 2013, doi: 10.7763/IJMLC.2013.V3.352.
  • S. Anand, D. P. Mishra, and S. K. Sarangi, "CFD supported performance analysis of an innovative biomass dryer," Renew. Energy, vol. 159, no. 2020, pp. 860–872, 2020, doi: 10.1016/j.renene.2020.06.039.
  • N. Kottayat, S. Kumar, A. K. Yadav, and S. Anish, "Computational and experimental studies on the development of an energy-efficient drier using ribbed triangular duct solar air heater," Sol. Energy, vol. 209, no. September, pp. 454–469, 2020, doi: 10.1016/j.solener.2020.09.012.
  • F. Erdog˘du, M. Linke, U. Praeger, M. Geyer, and O. Schlüter, "Experimental determination of thermal conductivity and thermal diffusivity of whole green ( unripe ) and yellow ( ripe ) Cavendish bananas under cooling conditions," J. Food Eng. J., vol. 128, pp. 46–52, 2014, doi: 10.1016/j.jfoodeng.2013.12.010.
  • E. K. Akpinar and Y. Bicer, "Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun," Energy Convers. Manag., vol. 49, no. 2008, pp. 1367–1375, 2008, doi: 10.1016/j.enconman.2008.01.004.
  • I. N. Simate and S. Cherotich, "Design and Testing of a Natural Convection Solar Tunnel Dryer for Mango," J. Sol. Energy, vol. 2017, 2017, doi: 10.1155/2017/4525141 Research.
  • J. P. Ekka, K. Bala, P. Muthukumar, and D. K. Kanaujiya, "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, vol. 152. pp. 55–66, 2020, doi: 10.1016/j.renene.2020.01.035.
  • Z. Alimohammadi, H. Samimi Akhijahani, and P. Salami, "Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods," Sol. Energy, vol. 201, pp. 157–177, 2020, doi: 10.1016/j.solener.2020.02.079.
  • A. Khanlari, "Thermal performance improvement of an indirect solar dryer with tube-type absorber packed with aluminum wool," Sol. Energy, vol. 217, pp. 328–341, 2021, doi: 10.1016/j.solener.2021.02.029
  • F. Nasri, "Solar thermal drying performance analysis of banana and peach in the region of Gafsa (Tunisia)," Case Stud. Therm. Eng., vol. 22, p. 100771, 2020, doi: 10.1016/j.csite.2020.100771.
  • A. Lingayat, V. P. Chandramohan, and V. R. K. Raju, "Design, Development and Performance of Indirect Type Solar Dryer for Banana Drying," Energy Procedia, vol. 109, no. 2017, pp. 409–416, 2017, doi: 10.1016/j.egypro.2017.03.041.
  • A. Midilli and H. Kucuk, "Mathematical modeling of thin layer drying of pistachio by using solar energy," Energy Convers. Manag., vol. 44, no. 7, pp. 1111–1122, 2003, doi: 10.1016/S0196-8904(02)00099-7.
  • T. Gunhan, V. Demir, E. Hancioglu, and A. Hepbasli, "Mathematical modelling of drying of bay leaves," Energy Convers. Manag., vol. 46, pp. 1667–1679, 2005, doi: 10.1016/j.enconman.2004.10.001.
  • A. A. El-Sebaii and S. M. Shalaby, "Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint," Energy Convers. Manag., vol. 74, pp. 109–116, 2013, doi: 10.1016/j.enconman.2013.05.006.
  • M. Younis, D. Abdelkarim, and A. Zein El-Abdein, "Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices," Saudi J. Biol. Sci., vol. 25, no. 2018, pp. 332–338, 2017, doi: 10.1016/j.sjbs.2017.06.011.
  • T. Hadibi, A. Boubekri, and D. Mennouche, "3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer," Renew. Energy, vol. 170, no. 2021, pp. 1052–1069, 2021, doi: 10.1016/j.renene.2021.02.029.
  • L. Ait Mohamed, C. S. Ethmane Kane, M. Kouhila, A. Jamali, M. Mahrouz, and N. Kechaou, "Thin layer modelling of Gelidium sesquipedale solar drying process," Energy Convers. Manag., vol. 49, no. 5, pp. 940–946, 2008, doi: 10.1016/j.enconman.2007.10.023.
  • S. Mghazli, M. Ouhammou, N. Hidar, L. Lahnine, A. Idlimam, and M. Mahrouz, "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renew. Energy, vol. 108, no. 2017, pp. 303–310, 2017, doi: 10.1016/j.renene.2017.02.022.
  • B. Yelmen, Ç. Ün, H. Hande, and M. Yüksekdağ, "Mathematical modelling of greenhouse drying of red chilli pepper," African J. Agric. Res. Full, vol. 14, no. 9, pp. 539–547, 2019, doi: 10.5897/AJAR2018.13748.
  • M. A. Hossain, B. M. A. Amer, and K. Gottschalk, "Hybrid solar dryer for quality dried tomato," Dry. Technol., vol. 26, no. 12, pp. 1591–1601, 2008, doi: 10.1080/07373930802467466.
  • N. A. Vlachos, T. D. Karapantsios, A. I. Balouktsis, and D. Chassapis, "DESIGN AND TESTING OF A NEW SOLAR TRAY DRYER," Dry. Technol. An Int. J., vol. 20, no. 6, pp. 1243–1271, 2002, doi: http://dx.doi.org/10.1081/DRT-120004050.
  • H. Moussaoui, Y. Bahammou, Z. Tagnamas, M. Kouhila, A. Lamharrar, and A. Idlimam, "Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer," Renew. Energy, vol. 168, pp. 131–140, 2021, doi: 10.1016/j.renene.2020.12.046.
  • T. Nadu, "THIN LAYER DRYING CHARACTERISTICS OF CURRY LEAVES ( MURRAYA KOENIGII )," vol. 21, pp. 359–367, 2017.
  • B. Basumatary et al., "Design, Construction and Calibration of Low Cost Solar Cabinet Dryer," Int. J. Environ. Eng. Manag., vol. 4, no. 4, pp. 351–358, 2013.

Subjects

ISSN: 2582-8029 (Online)
https://portal.issn.org/resource/ISSN/2582-8029#
Retrieval Number: 100.1/ijpte.H96670712823
https://www.ijpte.latticescipub.com/portfolio-item/H96670712823/
Journal Website: www.ijpte.latticescipub.com
https://www.ijpte.latticescipub.com/
Publisher: Lattice Science Publication (LSP)
https://latticescipub.com/