Published November 2, 2023 | Version 1
Dataset Open

Heterogeneous/Homogeneous Change Detection dataset

  • 1. ROR icon Pontificia Universidad Javeriana
  • 2. Ai Fund
  • 3. ROR icon University of Delaware
  • 4. Multimodal Sensing and Spectroscopy Lab
  • 5. ROR icon Helmholtz-Zentrum Dresden-Rossendorf
  • 6. ROR icon Grenoble Images Parole Signal Automatique
  • 7. ROR icon Université Grenoble Alpes

Description

"Please if you use this datasets we appreciated that you reference this repository and cite the works related that made possible the generation of this dataset."

This change detection datastet has different events, satellites, resolutions and includes both homogeneous/heterogeneous cases. The main idea of the dataset is to bring a benchmark on semantic change detection in remote sensing field.

This dataset is the outcome of the following publications:

  1. @article{   JimenezSierra2022graph,
    author={Jimenez-Sierra, David Alejandro and Quintero-Olaya, David Alfredo and Alvear-Mu{\~n}oz, Juan Carlos and Ben{\'i}tez-Restrepo, Hern{\'a}n Dar{\'i}o and Florez-Ospina, Juan Felipe and Chanussot, Jocelyn},
    journal={IEEE Transactions on Geoscience and Remote Sensing},
    title={Graph Learning Based on Signal Smoothness Representation for Homogeneous and Heterogeneous Change Detection},
    year={2022},
    volume={60},
    number={},
    pages={1-16},
    doi={10.1109/TGRS.2022.3168126}
    }
     
  2. @article{   JimenezSierra2020graph,
    title={Graph-Based Data Fusion Applied to: Change Detection and Biomass Estimation in Rice Crops},
    author={Jimenez-Sierra, David Alejandro and Ben{\'i}tez-Restrepo, Hern{\'a}n Dar{\'i}o and Vargas-Cardona, Hern{\'a}n Dar{\'i}o and Chanussot, Jocelyn},
    journal={Remote Sensing},
    volume={12},
    number={17},
    pages={2683},
    year={2020},
    publisher={Multidisciplinary Digital Publishing Institute},
    doi={10.3390/rs12172683}
    }
     
  3. @inproceedings{jimenez2021blue,
    title={Blue noise sampling and Nystrom extension for graph based change detection},
    author={Jimenez-Sierra, David Alejandro and Ben{\'\i}tez-Restrepo, Hern{\'a}n Dar{\'\i}o and Arce, Gonzalo R and Florez-Ospina, Juan F},
    booktitle={2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS},
    ages={2895--2898},
    year={2021},
    organization={IEEE},
    doi={10.1109/IGARSS47720.2021.9555107}
    }
     
  4. @article{florez2023exploiting,
    title={Exploiting variational inequalities for generalized change detection on graphs},
    author={Florez-Ospina, Juan F and Jimenez Sierra, David A and Benitez-Restrepo, Hernan D and Arce, Gonzalo},
    journal={IEEE Transactions on Geoscience and Remote Sensing},  
    year={2023},
    volume={61},
    number={},
    pages={1-16},
    doi={10.1109/TGRS.2023.3322377}
    }
     
  5. @article{florez2023exploitingxiv,
    title={Exploiting variational inequalities for generalized change detection on graphs},
    author={Florez-Ospina, Juan F. and Jimenez-Sierra, David A. and Benitez-Restrepo, Hernan D. and Arce, Gonzalo R},
    year={2023},
    publisher={TechRxiv},
    doi={10.36227/techrxiv.23295866.v1}
    }

In the table on the html file (dataset_table.html) are tabulated all the metadata and details related to each case within the dasetet. The cases with a link, were gathered from those sources and authors, therefore you should refer to their work as well.

The rest of the cases or events (without a link), were obtained through the use of open sources such as:

In addition, we carried out all the processing of the images by using the SNAP toolbox from the European Space Agency. This proccessing involves the following:

  • Data co-registration
  • Cropping
  • Apply Orbit (for SAR data)
  • Calibration (for SAR data)
  • Speckle Filter (for SAR data)
  • Terrain Correction (for SAR data)

Lastly, the ground truth was obtained from homogeneous images for pre/post events by drawing polygons to highlight the areas where a visible change was present. The images where layout and synchorized to be zoomed over the same are to have a better view of changes. This was an exhaustive work in order to be precise as possible.

Feel free to improve and contribute to this dataset.

Files

Files (1.5 GB)

Name Size Download all
md5:b23358cc764f928541e1bbb43e628ab4
6.3 MB Download
md5:690149a7a5a615e3346bf3a5fa26fdc6
6.7 MB Download
md5:46cff18502377946189f6d4afeb3426e
40.8 MB Download
md5:c351e42c327d79be6a08f418a1c437c9
377.5 MB Download
md5:e004fd5c0938295c1cc748f4af2a0667
536.7 MB Download
md5:7bcac392dfdd560945f081a0aeb64528
6.6 kB Download
md5:2e3f6665eadb75d6e30080c27f55fa2a
64.9 MB Download
md5:09cd77af082b686e1d194b01235ba7c3
54.9 MB Download
md5:ae22e99a25f96869ec7968916159f36f
34.1 MB Download
md5:b1e92991ff6ebfb851b61d95a7f65631
110.8 MB Download
md5:a6b90a6b6c879d56dc6555f60944baa4
9.3 MB Download
md5:be23ee85bcd1ec919c00e40c26185d4d
3.7 MB Download
md5:d06934ab2ccc5ff1cdf2dd0a726483b3
12.9 MB Download
md5:82bed55dfbe1d320394f828f354fa58e
88.0 MB Download
md5:7e60d51a43cebdc41a4d504dd75fbd4f
25.6 MB Download
md5:09bf674dcef290910a5beb46008e214e
121.9 kB Download
md5:9280247ab6f5191ff33f2f39d8652acd
1.1 MB Download
md5:3c3f7201039058ecec5142457a99f978
57.8 MB Download
md5:c553adb6e9c8afc86ee5c6a12f0e3287
17.8 MB Download
md5:a0f4a6182ae1c9fe94eb6dfe957beb6e
1.4 MB Download
md5:9d8d385247b490f28d018b2c6875a930
73.6 MB Download
md5:9d8d4672ed1c70a5943e3b9cd0cebdce
1.2 MB Download

Additional details

Related works

Is derived from
Journal article: 10.3390/rs12172683 (DOI)
Journal article: 10.1109/TGRS.2022.3168126 (DOI)
Conference paper: 10.1109/IGARSS47720.2021.9555107 (DOI)
Journal article: 10.36227/techrxiv.23295866.v1 (DOI)
Journal article: 10.1109/TGRS.2023.3322377 (DOI)