Published May 31, 2021 | Version v1
Journal article Restricted

Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery

  • 1. * & University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal & * & LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universit´ario de Santiago, 3810-193, Aveiro, Portugal

Description

Dias, Maria Celeste, Pinto, Diana C.G.A., Figueiredo, Catarina, Santos, Conceiç˜ao, Silva, Artur M. S. (2021): Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. Phytochemistry (112695) 185: 1-8, DOI: 10.1016/j.phytochem.2021.112695, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112695

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFE7B020FFF1A17FD032FF85F25CFF91

References

  • Agati, G., Azzarello, E., Pollastri, S., Tattini, M., 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 196, 67-76. https://doi.org/ 10.1016/j.plantsci.2012.07.014.
  • Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., Tattini, M., 2011. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J. Plant Physiol. 168, 204-212. https://doi.org/10.1016/j.
  • Araujo, M., Oliveira, J.M.P.F., Santos, C., Moutinho-Pereira, J., Correia, C., Dias, M.C., 2019. Responses of olive plants exposed to different irrigation treatments in combination with heat shock: physiological and molecular mechanisms during exposure and recovery. Planta 249, 1583-1598. https://doi.org/10.1007/s00425- 019-03109-2.
  • Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Goncalves, B.C., Ferreira, H.F., Correia, C.M., 2006. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Sci. 170, 596-605. https://doi.org/10.1016/j.plantsci.2005.10.014.
  • Bansal, S., Hallsby, G., L¨ofvenius, M.O., Nilsson, M.C., 2013. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiol. 33, 451-463. https://doi.org/ 10.1093/treephys/tpt019.
  • Bernal, M., Llorens, L., Badosa, J., Verdaguer, D., 2013. Interactive effects of UV radiation and water availability on seedlings of six woody Mediterranean species.
  • Physiol. Plantarum 147, 234-237. https://doi.org/10.1111/j.1399- 3054.2012.01660.x.
  • Brito, C., Dinis, L.-T., Moutinho Pereira, J., Correia, C.M., 2019. Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232. https://doi.org/ 10.3390/plants8070232.
  • Brunetti, C., Ferdinando, D.M., Fini, A., Pollastri, S., Tattini, M., 2013. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int. J. Mol. Sci. 14, 3540-3555. https://doi.org/10.3390/ijms14023540.
  • Burchard, P., Bilger, W., Weissenb¨ock, G., 2000. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by UV-induced chlorophyll fluorescence measurements. Plant Cell Environ. 23, 1373-1380. https://doi.org/10.1046/j.1365- 3040.2000.00633.x.
  • Correia, C.M., Coutinho, J.F., Bacelar, E.A., Goncalves, B.M., Bjorn ¨, L.O., Moutinho-Pereira, J., 2012. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize. Sci. World J. 608954, 1-11. https://doi.org/10.1100/2012/608954.
  • De Ollas, C., Morill´on, R., Fotopoulos, V., Pu´ertolas, J., Ollitrault, P., Gomez-Cadenas ´, A., Arbona, V., 2019. Facing climate change: biotechnology of iconic mediterranean woody. Crops Front. Plant Sci. 10, 427. https://doi.org/10.3389/fpls.2019.00427.
  • Dias, M.C., Correia, S., Serˆodio, J., Silva, A.M.S., Freitas, H., Santos, C., 2018a.
  • Dias, M.C., Figueiredo, C., Pinto, D.C.G.A., Freitas, H., Santos, C., Silva, A.M.S., 2019.
  • Dias, M.C., Pinto, D., Correia, C., Moutino-Pereira, J., Oliveira, H., Freitas, H., Silva, A.M. S., Santos, C., 2018b. UV-B radiation modulates physiology and lipophilic metabolite profile in Olea europaea. J. Plant Physiol. 222, 39-50. https://doi.org/10.1016/j.
  • Dias, M.C., Pinto, D.C.G.A., Freitas, H., Santos, C., Silva, A.M.S., 2020a. The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids. Phytochemistry 170, 112199. https://doi.org/10.1016/j.
  • Dias, M.C., Santos, C., Silva, S., Pinto, D.C.G.A., Silva, A.M.S., 2020b. Physiological and metabolite reconfiguration of Olea europaea to cope and recover from a heat or high UV B shock. J. Agric. Food Chem. 68, 11339-11349. https://doi.org/10.1021/acs. jafc.0c04719.
  • Diego, N.D., Spichal, L., 2020. Use of plant metabolites to mitigate stress effects in crops. Chapter XI. In: Geelen, D., Xu, L. (Eds.), The Chemical Biology of Plant Biostimulants. Wiley Online Library, pp. 261-300.
  • D' Imperio, M., Cardinali, A., D' Antuono, I., Linsalata, L., Minervini, F., Redan, B.W., Ferruzzi, M.J., 2014. Stability-activity of verbascoside, a known antioxidant compound, at different pH conditions. Food Res. Int. 66, 373-378. https://doi.org/ 10.1016/j.foodres.2014.09.037.
  • Dono, G., Cortignani, R., Dell' Unto, D., Deligios, P., Doro, L., Lacetera, N., Mula, L., Pasqui, M., Quaresima, S., Vitali, A., Roggero, P.P., 2016. Winners and losers from climate change in agriculture: insights from a case study in the Mediterranean basin. Agric. Syst. 147, 65-75. https://doi.org/10.1016/j.agsy.2016.05.013.
  • Dotto, M., Casati, P., 2017. Developmental reprogramming by UV-B radiation in plants. Plant Sci. 264, 96-101. https://doi.org/10.1016/j.plantsci.2017.09.006.
  • G´alvez, M., Martin-Cordero, C., Ayuso, M.J., 2005. Pharmacologic activities of iridoids biosynthesized by route II. In: Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry. Elsevier, pp. 365-394.
  • Georgieva, K., Ivanova, A., Doncheva, S., Petkova, S., Stefanov, D., P´eli, E., Tuba, Z., 2011. Fatty acid content during reconstitution of the photosynthetic apparatus in the air-dried leaves of Xerophyta scabrida after rehydration. Biol. Plant. (Prague) 55, 581-585. https://doi.org/10.1007/s10535-011-0130-7.
  • Hassen, I., Casabianca, H., Hosni, K., 2015. Biological activities of the natural antioxidant oleuropein: exceeding the expectation - a mini-review. J. Funct. Foods 18, 926-940. https://doi.org/10.1016/j.jff.2014.09.001.
  • IPCC, 2014. Intergovernmental Panel on Climate Change - climate change 2014 impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field, C.B. (Ed.), Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • Kruk, I., Aboul-Enein, H.Y., Michalska, T., Lichszteld, K., Kladna, A., 2005. ROS scavenging by plant phenols genistein and oleuropein. Luminescence 20, 81-89. https://doi.org/10.1002/bio.808.
  • Larkindale, J., Huang, B., 2004. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol. 161, 405-413. https://doi.org/10.1078/0176-1617- 01239.
  • Lv, Y., Tahir, I.I., Olsson, M.E., 2016. Factors affecting the content of the ursolic and oleanolic acid in apple peel: influence of cultivars, sun exposure, storage conditions, bruising and Penicillium expansum infection. J. Sci. Food Agric. 96, 2161-2169. https://doi.org/10.1002/jsfa.7332.
  • Ma, Ying, Dias, M.C., Freitas, H., 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. https://doi.org/10.3389/ fpls.2020.591911.
  • Mechri, B., Tekaya, M., Hammami, M., Chehab, H., 2019. Root verbascoside and oleuropein are potential indicators of drought resistance in olive trees (Olea europaea L.). Plant Physiol. Biochem. 141, 407-414. https://doi.org/10.1016/j. plaphy.2019.06.024.
  • Michel, T., Khlif, I., Kanakis, P., Termentzi, A., Allouche, N., Halabalaki, M., Skaltsounis, A.-L., 2015. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem. Lett. 11, 424-439. https://doi.org/10.1016/j. phytol.2014.12.020.
  • Mierziak, J., Kostyn, K., Kulma, A., 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules 19, 16240-16265. https://doi.org/ 10.3390/molecules191016240.
  • Mihailova, A., Abbado, D., Pedentchouk, N., 2015. Differences in n-alkane profiles between olives and olive leaves as potential indicators for the assessment of olive leaf presence in virgin olive oils. Eur. J. Lipid Sci. Technol. 117, 1480-1485. https:// doi.org/10.1002/ejlt.201400406.
  • Petridis, A., Therios, I., Samouris, G., Koundouras, S., Giannakoula, A., 2012. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol. Biochem. 60, 1-11. https://doi.org/10.1016/j.plaphy.2012.07.014.
  • Pfundel, E.E., Agati, G., Cerovic, Z.G., 2007. Optical properties of plant surfaces. In: Riederer, M., Muller, C. (Eds.), Annual Plant Reviews: Biology of the Plant Cuticle, vol. 23. Wiley-Blackwell Publishing Professional, pp. 216-249. https://doi.org/ 10.1002/9780470988718. ch6.
  • Rogowska, A.A., Szakiel, A., 2020. The role of sterols in plant response to abiotic stress. Phytochemistry Rev. 19, 1525-1538. https://doi.org/10.1007/s11101-020-09708- 2.
  • Sarian, M.N., Ahmed, Q.U., Soad ´, S.Z.M., Alhassan, A.M., Murugesu, S., Perumal, V., Mohamad, S.N.A.S., Khatib, A., Latip, J., 2017. Antioxidant and antidiabetic effects of flavonoids: a structure-activity relationship based study. BioMed Res. Int. 14 https://doi.org/10.1155/2017/8386065.
  • Schwachtje, J., Whitcomb, S.J., Firmino, A.A.P., Zuther, E., Hincha, D.K., Kopka, J., 2019. Induced, imprinted, and primed responses to changing environments: does metabolism store and process information? Front. Plant Sci. 10, 106. https://doi. org/10.3389/fpls.2019.00106.
  • Silva, S., Santos, C., Serodio, J., Silva, A.M.S., Dias, M.C., 2018. Physiological performance of drought-stressed olive plants when exposed to a combined heat-UV-B shock and after stress relief. Funct. Plant Biol. 45, 1233-1240. https://doi.org/ 10.1071/FP18026.
  • Talhaoui, N., G´omez-Caravaca, A.M., Le´on, L., De la Rosa, R., Fern´andez-Guti´errez, A., Segura-Carretero, A., 2015. Pattern of variation of fruit traits and phenol content in olive fruits from six different cultivars. J. Agric. Food Chem. 63, 10466-10476. https://doi.org/10.1021/acs.jafc.5b04315.
  • Tchimene, M.K., Nwaehujor, C.O., Ezenwali, M., Okoli, C.C., Iwu, M.M., 2016. Free radical scavenging activity of lupeol isolated from the methanol leaf extract of Crateva adansonii Oliv. (Capparidaceae). Int. J. Pharmacogn. Phytochem. Res. 8, 419-426.
  • Tolve, R., Cela, N., Condelli, N., Cairano, M.D., Caruso, M.C., Galgano, F., 2020. Microencapsulation as a tool for the formulation of functional foods: the phytosterols' case study. Foods 9, 470. https://doi.org/10.3390/foods9040470.
  • Valente, S., Machado, B., Pinto, D.C.G.A., Santos, C., Silva, A.M.S., Dias, M.C., 2020. Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat. Food Chem. 329, 127191. https://doi.org/10.1016/j. foodchem.2020.127191.
  • Wang, J., Juliani, H.R., Jespersen, D.J., Huang, B., 2017. Differential profiles of membrane proteins, fatty acids, and sterols associated with genetic variations in heat tolerance for a perennial grass species, hard fescue (Festuca Trachyphylla). Environ. Exp. Bot. 140, 65-75. https://doi.org/10.1016/j.envexpbot.2017.05.014.
  • Zandalinas, S.I., Mittler, R., Balfagon ´, D., Arbona, V., G´omez-Cadenas, A., 2018. Plant adaptations to the combination of drought and high temperatures. Physiol. Plantarum 162, 2-12. https://doi.org/10.1111/ppl.12540.
  • Zhang, C., Lu, Q., Verma, D.P.S., 1997. Characterization of Δ1-pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress. Plant Sci. 129, 81-89. https://doi.org/10.1016/S0168-9452(97)00174-X.