Published December 31, 2021 | Version v1
Journal article Restricted

Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi

  • 1. * & Laboratory Research in Vegetal Metabolic Activities, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Cra 30 No. & Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajic´a, 250247, Colombia

Description

Romero-Rinc, Ana, on, Martínez, Sixta Tulia, Higuera, Blanca Ligia, Coy-Barrera, Ericsson, Ardila, Harold Duban (2021): Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry (112933) 192: 1-14, DOI: 10.1016/j.phytochem.2021.112933, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112933

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FB00FF8EFFC1FFBFFFDE547EFFDBFFFA

References

  • Abd-elsalam, K.A., Aly, I.N., Abdel-satar, M.A., Khalil, M.S., Verreet, J.A., 2003. PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. Afr. J. Biothecnol. 2, 82-85. https://doi.org/10.5897/AJB2003.000-1016.
  • Agati, G., Azzarello, E., Pollastri, S., Tattini, M., 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 196, 67-76. https://doi.org/ 10.1016/j.plantsci.2012.07.014.
  • Agati, G., Brunetti, C., Fini, A., Gori, A., Guidi, L., Landi, M., Sebastiani, F., Tattini, M., 2020. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants 9, 1098. https://doi.org/10.3390/antiox9111098.
  • Ahuja, I., Kissen, R., Bones, A.M., 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17, 73-90. https://doi.org/10.1016/j.tplants.2011.11.002.
  • Ambawat, S., Sharma, P., Yadav, N.R., Yadav, R.C., 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiol. Mol. Biol. plants an Int. J. Funct. plant Biol. 19, 307-321. https://doi.org/10.1007/s12298-013-0179-1.
  • Ardila, H.D., Martinez, S.T., Higuera, B.L., 2013. Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiol. Plant. 35, 1233-1245. https://doi.org/10.1007/s11738-012-1162-0.
  • Ardila, H.D., Torres, A.M., Martinez, S.T., Higuera, B.L., 2014. Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusar ium oxysporum f. sp. dianthi. Physiol. Mol. Plant Pathol. 85, 42-52. https://doi.org/10.1016/j.pmpp.2014.01.003.
  • Arfaoui, A., El Hadrami, A., Mabrouk, Y., Sifi, B., Boudabous, A., El Hadrami, I., Daayf, F., Ch´erif, M., 2007. Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol. Biochem. 45, 470-479. https://doi. org/10.1016/j.plaphy.2007.04.004.
  • Baayen, R.P., Commelin, W., Phytopathological, S., 1986. Regeneration of vascular tissues in relation to Fusarium wilt resistance of carnation. Neth. J. Plant Pathol. 92, 273-285. https://doi.org/10.1007/BF01977590.
  • Baayen, R.P., Elgersma, D.M., Demmink, J.F., Sparnaaij, L.D., 1988. Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f.sp. dianthi. Neth. J. Plant Pathol. https://doi.org/10.1007/ BF01998398.
  • Baayen, R.P., Niemann, G.J., 1989. Correlations between accumulation of dianthramides, dianthalexin and unknown compounds, and partial resistance to Fusarium oxysporum f. sp. dianthi in eleven carnation cultivars. J. Phytopathol. 126, 281-292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.x.
  • Baayen, R.P., Sparnaaij, L.D., Jansen, J., Niemann, G.J., 1991. Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Neth. J. Plant Pathol. 97, 73-86. https://doi.org/10.1007/ BF01974271.
  • Baba, S.A., Malik, S.A., 2015. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 9, 449-454. https://doi.org/10.1016/j. jtusci.2014.11.001.
  • Basallote-Ureba, M.J., Vela-Delgado, M.D., Capote, N., Melero-Vara, J.M., L´opezHerrera, C.J., Prados-Ligero, A.M., Talavera-Rubia, M.F., 2016. Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Protect. 89, 184-192. https://doi.org/10.1016/j.cropro.2016.07.013.
  • Baskar, V., Venkatesh, R., Ramalingam, S., 2018. In: Gupta, D.K., Palma, J.M., Corpas, F. J. (Eds.), Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses BT - Antioxidants and Antioxidant Enzymes in Higher Plants. Springer International Publishing, Cham, pp. 253-268. https://doi.org/10.1007/978-3-319- 75088-0_12.
  • Beckman, C.H., 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant Pathol. 57, 101-110. https://doi.org/10.1006/ pmpp.2000.0287.
  • Bell´es, J.M., L´opez-Gresa, M.P., Fayos, J., Pall´as, V., Rodrigo, I., Conejero, V., 2008. Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Sci. 174, 524-533. https://doi.org/10.1016/j. plantsci.2008.02.008.
  • Ben-Yephet, Y., Shtienberg, D.I., 1997. Effects of the host, the pathogen, the environment and their interactions, on Fusarium Wilt in Carnation. Phytoparasitica 25, 207-216.
  • Boba, A., Kulma, A., Kostyn, K., Starzycki, M., Starzycka, E., Szopa, J., 2011. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiol. Mol. Plant Pathol. 76, 39-47. https:// doi.org/10.1016/j.pmpp.2011.06.002.
  • Campos, L., Lopez-Gresa ´, M.P., Fuertes, D., Bell´es, J.M., Rodrigo, I., Lison ´, P., 2019. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biol. 19, 450 https://doi.org/10.1186/s12870-019-2063-9.
  • Chiocchetti, A., Bernardo, I., Daboussi, M.J., Garibaldi, A., Gullino, L., Langin, T., Migheli, Q., 2009. Detection of Fusarium oxysporum f. sp. dianthi in carnation tissue by PCR amplification of transposon insertions. Phytopathology 89, 1169-1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169.
  • Curir, P., Dolci, M., Dolci, P., Lanzotti, V., De Cooman, L., 2003. Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochem. Anal. 14, 8-12. https://doi.org/10.1002/pca.672.
  • Curir, P., Dolci, M., Galeotti, F., 2005. A Phytoalexin-Like Flavonol involved in the carnation (Dianthus caryophyllus) - Fusarium oxysporum f. sp. dianthi pathosystem. J. Phytopathol. 153, 65-67. https://doi.org/10.1111/j.1439-0434.2004.00916.x.
  • Curir, P., Dolci, M., Lanzotti, V., Taglialatela-scafati, O., 2001. Kaempferide triglycoside: a possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry 56, 717-721. https://doi.org/10.1016/ S0031-9422(00)00488-X.
  • Curir, P., Marchesini, A., Danieli, B., Mariani, F., 1996. 3-Hydroxyacetophenone in carnations is a phytoanticipin active against Fusarium oxysporum f. sp. dianthi. Phytochemistry 41, 447-450. https://doi.org/10.1016/0031-9422(95)00603-6.
  • Deng, Y., Lu, S., 2017. Biosynthesis and regulation of phenylpropanoids in plants. CRC Crit. Rev. Plant Sci. 36, 257-290. https://doi.org/10.1080/ 07352689.2017.1402852.
  • Desmedt, W., Jonckheere, W., Nguyen, V.H., Ameye, M., De Zutter, N., De Kock, K., Debode, J., Van Leeuwen, T., Audenaert, K., Vanholme, B., Kyndt, T., 2021. The phenylpropanoid pathway inhibitor piperonylic acid induces broad-spectrum pest and disease resistance in plants. Plant. Cell Environ. https://doi.org/10.1111/ pce.14119 n/a.
  • Desta, K.T., Shin, S.C., Shim, J., Kim, G., Shin, S.C., El-Aty, A.M., 2016. Flavonoid variations in pathogen-infected plants. Front. Nat. Prod. Chem. 2, 3-49. https://doi. org/10.2174/9781681083599116020009.
  • Dihazi, A., Serghini, M.A., Jaiti, F., Daayf, F., Driouich, A., Dihazi, H., El Hadrami, I., 2011. Structural and biochemical changes in salicylic-acid-treated date palm roots challenged with Fusarium oxysporum f. sp. albedinis. J. Pathog. 2011, 280481. https://doi.org/10.4061/2011/280481.
  • Dodds, P.N., Rathjen, J.P., 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548. https://doi.org/ 10.1038/nrg2812.
  • Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., Lepiniec, L., 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573-581. https://doi.org/ 10.1016/j.tplants.2010.06.005.
  • Dumanovi´c, J., Nepovimova, E., Natic ´, M., Kuˇca, K., Ja´cevic ´, V., 2020. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front. Plant Sci. 11, 552969 https://doi.org/10.3389/fpls.2020.552969.
  • Fukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T., Nomoto, K., 2003. A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3',5'- hydroxylase gene. Phytochemistry 63, 15-23. https://doi.org/10.1016/S0031-9422 (02)00684-2.
  • Galeotti, F., Barile, E., Curir, P., Dolci, M., Lanzotti, V., 2008a. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem. Lett. 1, 44-48. https://doi.org/10.1016/j.phytol.2007.10.001.
  • Galeotti, F., Barile, E., Lanzotti, V., Dolci, M., Curir, P., 2008b. Quantification of major flavonoids in carnation tissues (Dianthus caryophyllus) as a tool for cultivar discrimination. Z. Naturforsch. 63, 161-168.
  • G´orniak, I., Bartoszewski, R., Kr´oliczewski, J., 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Rev. 18, 241-272. https://doi.org/10.1007/s11101-018-9591-z.
  • Hassan, S., Mathesius, U., 2012. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 63, 3429-3444. https://doi.org/10.1093/jxb/err430.
  • Hegde, K.T., Narayanaswamy, H., Veeraghanti, K.S., Tg, M., 2017. Efficacy of bio-agents, botanicals and fungicides against Fusarium oxysporum f. sp. dianthi causing wilt of carnation. Int. J. Chem. Stud. 5, 139-142.
  • Higuera, B.L., Ebrahim-Nesbat, F., 1999. Study of vascular root responses as defense mechanisms in carnation resistance or susceptible to Fusarium oxysporum f. sp. dianthi by transmission electron microscopy. Acta Hortic. 482, 101-108. https://doi. org/10.17660/ActaHortic.1999.482.14.
  • Higuera, B.L., Montes, V.M., 1996. Contribution of HPLC to the Study of the defense mechanisms acting in carnation (Dianthus caryophyllus L.) roots on infection with Fusarium oxysporum f. sp. dianthi. J. High Resolut. Chromatogr. 19, 706-708. https://doi.org/10.1002/jhrc.1240191213.
  • Hoang, V.L.T., Innes, D.J., Shaw, P.N., Monteith, G.R., Gidley, M.J., Dietzgen, R.G., 2015. Sequence diversity and differential expression of major phenylpropanoidflavonoid biosynthetic genes among three mango varieties. BMC Genom. 16, 1-12. https://doi.org/10.1186/s12864-015-1784-x.
  • Horbach, R., Navarro-Quesada, A.R., Knogge, W., Deising, H.B., 2011. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J. Plant Physiol. 168, 51-62. https://doi.org/10.1016/j.jplph.2010.06.014.
  • Hou, M., Zhang, Y., Mu, G., Cui, S., Yang, X., Liu, L., 2020. Molecular cloning and expression characterization of flavonol synthase genes in peanut (Arachis hypogaea). Sci. Rep. 10, 17717 https://doi.org/10.1038/s41598-020-74763-w.
  • Jones, A.M., Chattopadhyay, A., Shukla, M., Zon ´, J., Saxena, P.K., 2012. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana). BMC Plant Biol. 12, 75. https://doi.org/10.1186/1471-2229-12-75.
  • Kashyap, A., Planas-Marqu`es, M., Capellades, M., Valls, M., Coll, N.S., 2021. Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. J. Exp. Bot. 72, 184-198. https://doi.org/10.1093/jxb/eraa444.
  • Kumudini, B.S., Jayamohan, N.S., Patil, S.V., Govardhana, M., 2018. Primary plant metabolism during plant-pathogen interactions and its role in defense. In: Plant Metabolites and Regulation under Environmental Stress. Elsevier Inc., pp. 215-229. https://doi.org/10.1016/B978-0-12-812689-9.00011-X
  • Lanubile, A., Bernardi, J., Battilani, P., Logrieco, A., Marocco, A., 2012. Resistant and susceptible maize genotypes activate different transcriptional responses against Fusarium verticillioides. Physiol. Mol. Plant Pathol. 77, 52-59. https://doi.org/ 10.1016/j.pmpp.2011.12.002.
  • Lattanzio, V., Lattanzio, V.M.T., Cardinali, A., Amendola, V., 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato, F. (Ed.), Phytochemistry: Advances in Research. Research Signpost, Kerala, pp. 23-67.
  • Le Roy, J., Huss, B., Creach, A., Hawkins, S., Neutelings, G., 2016. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front. Plant Sci. 7, 735 https://doi.org/10.3389/fpls.2016.00735.
  • Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., Steinberg, C., 2016. Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review. Biol. Contr. 101, 17-30. https://doi.org/10.1016/j.biocontrol.2016.06.004.
  • Li, S., 2014. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYBbHLH-WD40 (MBW) complex. Plant Signal. Behav. 9 https://doi.org/10.4161/ psb.27522 e27522-e27522.
  • Liu, J., Osbourn, A., Ma, P., 2015. MYB Transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 8, 689-708. https://doi.org/ 10.1016/j.molp.2015.03.012.
  • Liu, Z., Luan, Y., Li, J., Yin, Y., 2016. Expression of a tomato MYB gene in transgenic tobacco increases resistance to Fusarium oxysporum and Botrytis cinerea. Eur. J. Plant Pathol. 144, 607-617. https://doi.org/10.1007/s10658-015-0799-0.
  • Long, L., Liu, J., Gao, Y., Xu, F.-C., Zhao, J.-R., Li, B., Gao, W., 2019. Flavonoid accumulation in spontaneous cotton mutant results in red coloration and enhanced disease resistance. Plant Physiol. Biochem. 143, 40-49. https://doi.org/10.1016/j. plaphy.2019.08.021.
  • Lorenc-Kukula, K., Wr´obel-Kwiatkowska, M., Starzycki, M., Szopa, J., 2007. Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiol. Mol. Plant Pathol. 70, 38-48. https://doi.org/10.1016/j.pmpp.2007.05.005.
  • Lu, Y., Chen, Q., Bu, Y., Luo, R., Hao, S., Zhang, J., Tian, J., Yao, Y., 2017. Flavonoid accumulation plays an important role in the rust resistance of malus plant leaves. Front. Plant Sci. 8, 1286 https://doi.org/10.3389/fpls.2017.01286.
  • Ma, D., Constabel, C.P., 2019. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci. 24, 275-289. https://doi.org/10.1016/j. tplants.2018.12.003.
  • Ma, D., Sun, D., Wang, C., Li, Y., Guo, T., 2014. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 80, 60-66. https://doi.org/10.1016/j.plaphy.2014.03.024.
  • Maia, M., Ferreira, A.E.N., Nascimento, R., Monteiro, F., Traquete, F., Marques, A.P., Cunha, J., Dias, J.E.E., Cordeiro, C., Figueiredo, A., Silva, M.S., 2020. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Sci. Rep. 1-15 https://doi.org/10.1038/s41598-020-72781-2.
  • Mandal, S., Mitra, A., 2007. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol. Mol. Plant Pathol. 71, 201-209. https://doi.org/10.1016/j.pmpp.2008.02.003.
  • Mato, M., Onozaki, T., Ozeki, Y., Higeta, D., Itoh, Y., Yoshimoto, Y., Ikeda, H., Yoshida, H., Shibata, M., 2000. Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci. Hortic. 84, 333-347. https://doi.org/ 10.1016/S0304-4238(99)00140-5.
  • McLay, E.R., Pontaroli, A.C., Wargent, J.J., 2020. UV-B induced flavonoids contribute to reduced biotrophic disease susceptibility in lettuce seedlings. Front. Plant Sci. 11, 1691 https://doi.org/10.3389/fpls.2020.594681.
  • Mierziak, J., Kostyn, K., Kulma, A., 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules 19, 16240-16265. https://doi.org/ 10.3390/molecules191016240.
  • Monroy-Mena, S., Chac´on-Parra, A.L., Farfan-Angarita ´, J.P., Martinez-Peralta, S.T., Ardila-Barrantes, H.D., 2019. Selection of reference genes for transcriptional analysis in the pathosystem carnation (Dianthus caryophyllus L.)-Fusarium oxysporu m f. sp. dianthi. Rev. Colomb. Quim. 48, 5-14. https://doi.org/10.15446/rev.colomb.quim. v48n2.72771.
  • Morkunas, I., Bednarski, W., 2008. Fusarium oxysporum -induced oxidative stress and antioxidative defenses of yellow lupine embryo axes with different sugar levels. J. Plant Physiol. 165, 262-277. https://doi.org/10.1016/j.jplph.2007.01.020.
  • Morkunas, I., Narona, D., Nowak, W., Samardakiewicz, S., Remlein-Starosta, D., 2011. Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine. J. Plant Physiol. 168, 424-433. https://doi.org/10.1016/j. jplph.2010.08.017.
  • Niemann, G.J., Liem, J., van der Kerk-van Hoof, A., Niessen, W.M.A., 1992. Phytoalexins, benzoxazinones, N -aroylanthranilates and N -aroylanilines, from Fusarium -infected carnation stems. Phytochemistry 31, 3761-3767. https://doi.org/10.1016/S0031- 9422(00)97523-X.
  • Pandey, A., Misra, P., Kumar, P., 2015. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Rep. 34, 1515-1528. https://doi.org/10.1007/ s00299-015-1803-z.
  • Patra, B., Schluttenhofer, C., Wu, Y., Pattanaik, S., Yuan, L., 2013. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim. Biophys. Acta - Gene Regul. Mech. 1829, 1236-1247. https://doi.org/10.1016/j. bbagrm.2013.09.006.
  • Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., Vianello, A., 2013. Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 14, 14950-14973. https://doi.org/10.3390/ijms140714950.
  • Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 https://doi.org/10.1093/nar/29.9.e45.
  • Pluskal, T., Castillo, S., Villar-Briones, A., Oreˇsiˇc, M., 2010. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 11, 395 https://doi.org/10.1186/1471-2105-11- 395.
  • Pouralibaba, H.R., P´erez-de-Luque, A., Rubiales, D., 2017. Histopathology of the infection on resistant and susceptible lentil accessions by two contrasting pathotypes of Fusarium oxysporum f.sp. lentis. Eur. J. Plant Pathol. 148, 53-63. https://doi.org/ 10.1007/s10658-016-1068-6.
  • Ramirez-Prado, J.S., Abulfaraj, A.A., Rayapuram, N., Benhamed, M., Hirt, H., 2018. Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci. https:// doi.org/10.1016/j.tplants.2018.06.004.
  • Ravaglia, D., Espley, R.V., Henry-Kirk, R.A., Andreotti, C., Ziosi, V., Hellens, R.P., Costa, G., Allan, A.C., 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol. 13, 68. https://doi.org/10.1186/1471-2229-13-68.
  • S´a, R.A., Argolo, A.C.C., Napoletao, T.H., Gomes, F.S., Santos, N.D.L., Melo, C.M.L., Albuquerque, A.C., Xavier, H.S., Coelho, L.C.B.B., Bieber, L.W., Paiva, P.M.G., 2009. Antioxidant, Fusarium growth inhibition and Nasutitermes corniger repellent activities of secondary metabolites from Myracrodruon urundeuva heartwood. Int. Biodeterior. Biodegrad. 63, 470-477. https://doi.org/10.1016/j.ibiod.2009.01.002.
  • Sahebi, M., Hanafi, M.M., van Wijnen, A.J., Akmar, A.S.N., Azizi, P., Idris, A.S., Taheri, S., Foroughi, M., 2017. Profiling secondary metabolites of plant defence mechanisms and oil palm in response to Ganoderma boninense attack. Int. Biodeterior. Biodegrad. 122, 151-164. https://doi.org/10.1016/j. ibiod.2017.04.016.
  • Santiago, R., Armas, R. De, 2009. Changes in soluble and cell wall-bound hydroxycinnamic and hydroxybenzoic acids in sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Eur. J. Plant Pathol. 124, 439-450. https://doi. org/10.1007/s10658-009-9431-5.
  • Santos-Rodriguez, J., Coy-Barrera, E., Ardila, H.D., 2021. Mycelium dispersion from Fusarium oxysporum f. sp. dianthi elicits a reduction of wilt severity and influences phenolic profiles of carnation (Dianthus caryophyllus L.) roots. Plants 10, 1-20.
  • Schymanski, E.L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H.P., Hollender, J., 2014. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097-2098. https://doi.org/ 10.1021/es5002105.
  • Sekhon, R.S., Kuldau, G., Mansfield, M., Chopra, S., 2006. Characterization of Fusarium - induced expression of flavonoids and PR genes in maize. Physiol. Mol. Plant Pathol. 69, 109-117. https://doi.org/10.1016/j.pmpp.2007.02.004.
  • Shah, I., Shah, M.A., Nawaz, M.A., Pervez, S., Noreen, N., Vargas-de la Cruz, C., Khan, F., Blundell, R., Briffa, J., Azzopardi, J., Niaz, K., 2020. Analysis of other phenolics (capsaicin, gingerol, and alkylresorcinols). In: Silva, A.S., Nabavi, S.F., Saeedi, M., Nabavi, S.M. (Eds.), Recent Advances in Natural Products Analysis, vol. 6. Elsevier Inc., pp. 255-271. https://doi.org/10.1016/b978-0-12-816455-6.00006-8
  • Smilde, A.K., Jansen, J.J., Hoefsloot, H.C.J., Lamers, R.-J.A.N., van der Greef, J., Timmerman, M.E., 2005. ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21, 3043-3048. https://doi.org/10.1093/bioinformatics/bti476.
  • Soto-Sedano, J.C., Clavijo-Ortiz, M.J., Filgueira-Duarte, J.J., 2012. Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxyspor um f.sp. dianthi. Agron. Colomb. 30, 172-178.
  • Stracke, R., Jahns, O., Keck, M., Tohge, T., Niehaus, K., Fernie, A.R., Weisshaar, B., 2010. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111- independent flavonol glycoside accumulation. New Phytol. 188, 985-1000. https:// doi.org/10.1111/j.1469-8137.2010.03421.x.
  • Treutter, D., 2006. Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 4, 147-157. https://doi.org/10.1007/s10311-006-0068-8.
  • Treutter, D., 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 7, 581-591. https://doi.org/10.1055/s-2005-873009.
  • Vogt, T., 2010. Phenylpropanoid biosynthesis. Mol. Plant 3, 2-20. https://doi.org/ 10.1093/mp/ssp106.
  • Wang, X., Niu, Y., Zheng, Y., 2021. Multiple Functions of MYB transcription factors in abiotic stress responses. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22116125.
  • Wiesel, L., Newton, A.C., Elliott, I., Booty, D., Gilroy, E.M., Birch, P.R.J., Hein, I., 2014. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front. Plant Sci. 5, 655 https://doi.org/10.3389/fpls.2014.00655.
  • Wolcan, S.M., Malbr´an, I., Mourelos, C.A., Sisterna, M.N., Gonz´alez, M., del, P., Alippi, A. M., Nico, A., Lori, G.A., 2018. In: McGovern, R.J., Elmer, W.H. (Eds.), Diseases of Carnation BT - Handbook of Florists' Crops Diseases. Springer International Publishing, Cham, pp. 317-378. https://doi.org/10.1007/978-3-319-39670-5_14.
  • Xia, J., Sinelnikov, I.V., Wishart, D.S., 2011. MetATT: a web-based metabolomics tool for analyzing time-series and two-factor datasets. Bioinformatics 27, 2455-2456. https://doi.org/10.1093/bioinformatics/btr392.
  • Xing, L.-P., He, L.-Q., Xiao, J., Chen, Q.-G., Li, M.-H., Shang, Y., Zhu, Y.-F., Chen, P.-D., Cao, A.-Z., Wang, X.-E., 2017. An UDP-glucosyltransferase gene from barley confers disease resistance to Fusarium head blight. Plant Mol. Biol. Rep. 35, 224-236. https://doi.org/10.1007/s11105-016-1014-y.
  • Xu, F., Li, L., Zhang, W., Cheng, H., Sun, N., Cheng, S., Wang, Y., 2012. Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol. Biol. Rep. 39, 2285-2296. https://doi.org/10.1007/s11033-011-0978-9.
  • Yadav, V., Wang, Z., Wei, C., Amo, A., Ahmed, B., Yang, X., Zhang, X., 2020. Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens 9, 1-25. https://doi.org/10.3390/pathogens9040312.
  • Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M.H., Bahadar, K., 2018. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198-202. https://doi.org/10.1016/j.micpath.2018.08.034.
  • Zhang, J., Zhang, S., Li, H., Du, H., Huang, H., Li, Y., Hu, Y., Liu, H., Liu, Y., Yu, G., Huang, Y., 2016. Identification of transcription factors ZmMYB111 and ZmMYB148 involved in phenylpropanoid metabolism. Front. Plant Sci. 7, 148. https://doi.org/ 10.3389/fpls.2016.00148.
  • Zhao, J., 2015. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci. 20, 576-585. https://doi.org/10.1016/j.tplants.2015.06.007.
  • Zhao, J., Dixon, R.A., 2010. The "ins" and "outs" of flavonoid transport. Trends Plant Sci. 15, 72-80. https://doi.org/10.1016/j.tplants.2009.11.006.