Published December 31, 2021 | Version v1
Journal article Restricted

Specialised metabolites as chemotaxonomic markers of Coptosapelta diffusa, supporting its delimitation as sisterhood phylogenetic relationships with Rubioideae

  • 1. * & Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of

Description

Gao, Rong-Rong, Liu, Zhi-Fang, Yang, Xue-Fei, Song, Yu-Liang, Cui, Xiao-Yun, Yang, Ji-Yuan, Lu, Chun-Hua, Shen, Yue-Mao (2021): Specialised metabolites as chemotaxonomic markers of Coptosapelta diffusa, supporting its delimitation as sisterhood phylogenetic relationships with Rubioideae. Phytochemistry (112929) 192: 1-7, DOI: 10.1016/j.phytochem.2021.112929, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112929

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:D609974F8A444715FF958E3D405DFFDF

References

  • Aimi, N., Yamaguchi, K., Takahashi, M., Iwata, M., Sakai, S., Haginiwa, J., Iitaka, Y., 1981. Thysanolactone - a novel triterpene from Thysanospermum-diffusum Champ Var-Longitubum Ohwi. Tetrahedron 37, 983-985. https://doi.org/10.1002/ chin.198126317.
  • Al-Hamoud, G.A., Orfali, R.S., Takeda, Y., Sugimoto, S., Yamano, Y., Al Musayeib, N.M., Fantoukh, O.I., Amina, M., Otsuka, H., Matsunami, K., 2020. Lasianosides F-I: a new Iridoid and three new bis-iridoid glycosides from the leaves of Lasianthus verticillatus (Lour.) Merr. Molecules 25, 7356845. https://doi.org/10.3390/molecules25122798.
  • Arendrup, M.C., Prakash, A., Meletiadis, J., Sharma, C., Chowdhary, A., 2017. Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob. Agents 61. https://doi.org/10.1128/AAC.00485-17 e00485-00417.
  • Bremer, B., 2009. A review of molecular phylogenetic studies of Rubiaceae. Ann. Mo. Bot. Gard. 96, 4-26. https://doi.org/10.3417/2006197.
  • Bremer, B., Eriksson, T., 2009. Time tree of Rubiaceae: phylogeny and dating the family, subfamilies, and tribes. Int. J. Plant Sci. 170, 766-793. https://doi.org/10.1086/ 599077.
  • Bremer, B., Jansen, R.K., Oxelman, B., Backlund, M., Lantz, H., Kim, K.J., 1999. More characters or more taxa for a robust phylogeny - case study from the coffee family (Rubiaceae). Syst. Biol. 48, 413-435. https://doi.org/10.1080/106351599260085.
  • Chang, F.P., Huang, S.S., Lee, T.H., Chang, C.I., Kuo, T.F., Huang, G.J., Kuo, Y.H., 2019. Four eew iridoid metabolites have been isolated from the stems of Neonauclea reticulata (Havil.) Merr. with anti-inflammatory activities on LPS-induced RAW264.7 cells. Molecules 24, 4271. https://doi.org/10.3390/molecules24234271.
  • Dai, J.Q., Liu, Z.L., Yang, L., 2002. Non-glycosidic iridoids from Cymbaria mongolica. Phytochemistry 59, 537-542. https://doi.org/10.1016/s0031-9422(01)00488-5.
  • Dong, S.J., Li, B.C., Dai, W.F., Wang, D., Qin, Y., Zhang, M., 2017. Sesqui- and diterpenoids from the radix of Curcuma aromatica. J. Nat. Prod. 80, 3094-3103. https://doi.org/10.1021/acs.jnatprod.6b01100.
  • Dussert, S., Laffargue, A., de Kochko, A., Joet, T., 2008. Effectiveness of the fatty acid and sterol composition of seeds for the chemotaxonomy of Coffea subgenus Coffea. Phytochemistry 69, 2950-2960. https://doi.org/10.1016/j. phytochem.2008.09.021.
  • Feng, T., Cai, X.L., Du, Z.Z., Luo, X.D., 2008. Iridoids from the bark of Alstonia scholaris. Helv. Chim. Acta 91, 2247-2251. https://doi.org/10.1002/hlca.200890244.
  • Fraga, B.M., 2013. Natural sesquiterpenoids. Nat. Prod. Rep. 30, 1226-1264. https://doi. org/10.1039/c3np70047j.
  • Godecke, T., Kaloga, M., Kolodziej, H., 2005. A phenol glucoside, uncommon coumarins and flavonoids from Pelargonium sidoides DC. Z. Naturforsch B 60, 677-682. https:// doi.org/10.1515/znb-2005-0612.
  • Hounkong, K., Sawangjaroen, N., Kongyen, W., Rukachaisirikul, V., Wootipoom, N., 2015. Mechanisms of 1-hydroxy-2-hydroxymethylanthraquinone from Coptosapelta flavescens as an anti-giardial activity. Acta Trop. 146, 11-16. https://doi.org/ 10.1016/j.actatropica.2015.02.013.
  • Huang, W., 2008. Chemical Constituents and Antitubercular Activity from the Coptosapelta Diffusa. Institute of Natural Medicine, Kaohsiung Medical University.
  • Jarvis, B.B., 1995. Secondary metabolites and their role in evolution. An. Acad. Bras. Cienc. 67 (Suppl. 3), 329-345.
  • Kang, W., 2003. Studies on the Chemical Constituents and Anti-bacteria Activity of Three Rubiaceae Plants Chinese Academy of Sciences. Ph.D, p. 148.
  • Kang, W., Zhang, L., Song, Y., 2009. [Alpha-glucosidase inhibitors from Luculia pinciana]. China J. Chin. Mater. Med. 34, 406-409.
  • Kang, W.Y., Du, Z.Z., Yang, X.S., Hao, X.J., 2005. A new triterpene from Luculia pinciana Hook. J. Asian Nat. Prod. Res. 7, 91-94. https://doi.org/10.1080/ 10286020310001608967.
  • Kang, W.Y., Hao, X.J., 2007. Terpenoid glycosides from stem of Luculia pinceana. Zhongguo Zhong yao za zhi 32, 2606-2609.
  • Kawai, H., Kuroyanagi, M., Ueno, A., 1988. Iridoid glucosides from Lonicera-japonica T hunb. Chem. Pharm. Bull. 36, 3664-3666. https://doi.org/10.1248/cpb.36.3664.
  • Hohmann, J., 2017. Three new iridoid glycosides from the aerial parts of Asperula involucrata. Chem. Biodivers. 14 https://doi.org/10.1002/cbdv.201600288.
  • Kitagawa, I., Shibuya, H., Baek, N.I., Yokokawa, Y., Nitta, A., Wiriadinata, H., Yoshikawa, M., 1988. Pulosarioside, a new bitter trimeric-iridoid diglucoside, from an Indonesian Jamu, the bark of Alyxia-reinwardtii Bl (Apocynaceae). Chem. Pharm. Bull. 36, 4232-4235. https://doi.org/10.1248/cpb.36.4232.
  • Kongyen, W., Rukachaisirikul, V., Phongpaichit, S., Sawangjaroen, N., Songsing, P., Madardam, H., 2014. Anthraquinone and naphthoquinone derivatives from the roots of Coptosapelta flavescens. Nat. Prod. Commun. 9, 219-220. https://doi.org/ 10.1021/np5001208.
  • Li, C.K., Su, X.M., Li, F.H., Fu, J., Wang, H.Q., Li, B.M., Chen, R.Y., Kang, J., 2019a. Cytotoxic Quinones from the Aerial Parts of Morinda Umbellata L. Phytochemistry, vol. 167. https://doi.org/10.1016/j.phytochem.2019.112096.
  • Li, Y.Q., Li, G.Z., Dong, Y., Ma, X., Dong, H.J., Wu, Q.Q., Zhao, W.J., 2019b. Orobanone analogues from acid-promoted aromatization rearrangement of curcumol inhibit hypoxia-inducible factor-1 (HIF-1) in cell-based reporter assays. Bioorg. Chem. 85, 357-363. https://doi.org/10.1016/j.bioorg.2019.01.013.
  • Lou, Y., Zhao, F., He, H., Peng, K.F., Chen, L.X., Qiu, F., 2010. Four new sesquiterpenes from Curcuma wenyujin and their inhibitory effects on nitric-oxide production. Chem. Biodivers. 7, 1245-1253. https://doi.org/10.1002/cbdv.200900160.
  • Lu, Y., Hu, R., Dai, Z., Pan, Y., 2010. Preparative separation of anti-oxidative constituents from Rubia cordifolia by column-switching counter-current chromatography. J. Separ. Sci. 33, 2200-2205. https://doi.org/10.1002/jssc.201000173.
  • Ma, J.H., Wang, Y., Liu, Y., Gao, S.Y., Ding, L.Q., Zhao, F., Chen, L.X., Qiu, F., 2015. Four new sesquiterpenes from the rhizomes of Curcuma phaeocaulis and their iNOS inhibitory activities. J. Asian Nat. Prod. Res. 17, 532-540. https://doi.org/10.1080/ 10286020.2015.1046449.
  • Ma, Q.Y., Chen, Y.C., Huang, S.Z., Guo, Z.K., Dai, H.F., Hua, Y., Zhao, Y.X., 2014. Two new guaiane sesquiterpenoids from Daphne holosericea (Diels) Hamaya. Molecules 19, 14266-14272. https://doi.org/10.3390/molecules190914266.
  • Machida, K., Oyama, K., Ishii, M., Kakuda, R., Yaoita, Y., Kikuchi, M., 2000. Studies of the constituents of Gardenia species. II. Terpenoids from Gardeniae fructus. Chem. Pharm. Bull. 48, 746-748. https://doi.org/10.1248/cpb.48.746.
  • Martins, D., Nunez, C.V., 2015. Secondary metabolites from Rubiaceae species. Molecules 20, 13422-13495. https://doi.org/10.3390/molecules200713422.
  • Mongrand, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., Bessoule, J.J., 2005. Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. Phytochemistry 66, 549-559. https://doi.org/10.1016/j.phytochem.2004.12.021.
  • Moreira, V.F., Vieira, I.J., Braz-Filho, R., 2015. Chemistry and biological activity of Condamineeae tribe: a chemotaxonomic contribution of Rubiaceae family. Am. J. Plant Sci. 6, 2612. https://doi.org/10.4236/ajps.2015.616264.
  • Morimoto, M., Tanimoto, K., Sakatani, A., Komai, K., 2002. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera. litura F. Phytochemistry 60, 163-166. https://doi.org/10.1016/s0031-9422(02)00095-x.
  • Park, B.-S., Lee, H.-K., Lee, S.-E., Piao, X.-L., Takeoka, G.R., Wong, R.Y., Ahn, Y.-J., Kim, J.-H., 2006. Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. J. Ethnopharmacol. 105, 255-262. https:// doi.org/10.1016/j.jep.2005.11.005.
  • Peng, L.Y., Xu, G., He, J., Wu, X.D., Dong, L.B., Gao, X., Cheng, X., Su, J., Li, Y., Dong, W. M., Zhao, Q.S., 2015. Nor-lupane triterpenoid and guaiane sesquiterpenoids from Schefflera venulosa. Fitoterapia 103, 294-298. https://doi.org/10.1016/j. fitote.2015.05.005.
  • Raharivelomanana, P., Bianchini, J.P., Ramanoelina, A.R.P., Rasoharahona, J.R.E., Chatel, F., Faure, R., 2005. Structures of cadinane- and guaiane-type sesquiterpenoids from Enterospermum madagascariensis (Baill.). Homolle. Magn. Reson. Chem. 43, 1049-1052. https://doi.org/10.1002/mrc.1705.
  • Randau, K.P., Sproll, S., Lerche, H., Bracher, F., 2009. Pernambucone, a new tropone derivative from Croton argyroglossum. Die Pharmazie 64, 350-351. https://doi.org/ 10.1691/ph.2009.7592.
  • Robbrecht, E., J-F, M., 2006. The major evolutionary lineages of the coffee family (Rubiaceae, Angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and Supertree Construction based on rbcL, rps16, trnL-trnF and atpB-rbcL data. A new classification in two subfamilies. Cinchonoideae and Rubioideae. Syst. Geog. Plants 76, 85-146.
  • Rohr, M., Naegeli, P., Daly, J.J., 1979. New sesquiterpenoids of sweet fag oil (Acorus- Calamus). Phytochemistry 18, 279-281.
  • Rydin, C., Wikstrom, N., Bremer, B., 2017. Conflicting results from mitochondrial genomic data challenge current views of Rubiaceae phylogeny. Am. J. Bot. 104, 1522-1532. https://doi.org/10.3732/ajb.1700255.
  • Saidi, N., Mukhtar, M.R., Awang, K., Hadi, A.H.A., Ng, S.W., 2007. 6,7,8- trimethoxycoumarin from Cryptocarya bracteolata. Acta Crystallogr. E 63. https:// doi.org/10.1107/s1600536807036914. O3692-U1990.
  • Sakai, H., Kakuda, R., Yaoita, Y., Kikuchi, M., 2007. Secoiridoid glycosides from the leaves of Hydrangea macrophylla subsp serrata. J. Nat. Med. 61, 226-228. https:// doi.org/10.1007/s11418-006-0123-6.
  • Seco, J.M., Quinoa, E., Riguera, R., 2004. The assignment of absolute configuration by NMR. Chem. Rev. 104, 17-117. https://doi.org/10.1021/cr000665j.
  • Seco, J.M., Quinoa, E., Riguera, R., 2012. Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents. Chem. Rev. 112, 4603-4641. https://doi.org/10.1021/cr2003344.
  • Siddiqui, B.S., Sattar, F.A., Begum, S., Gulzar, T., Ahmad, F., 2006. New anthraquinones from the stem of Morinda citrifolia Linn. Nat. Prod. Res. 20, 1136-1144. https://doi. org/10.1080/14786410600907382.
  • Sunghwa, F., Koketsu, M., 2009. Phenolic and bis-iridoid glycosides from Strychnos cocculoides. Nat. Prod. Res. 23, 1408-1415. https://doi.org/10.1080/ 14786410902750969.
  • Tomassini, L., Cometa, M.F., Serafini, M., Nicoletti, M., 1995. Isolation of secoiridoid artifacts from Lonicera japonica. J. Nat. Prod. 58, 1756-1758. https://doi.org/ 10.1021/np50125a020.
  • Topcu, G., Che, C.T., Cordell, G.A., Ruangrungsi, N., 1990. Traditional medicinal-plants of Thailand .16.iridolactones from Alyxia Reinwardti. Phytochemistry 29, 3197-3199.
  • Vansteenis, C.G., 1969. Some comments concerning reduction of genus Thysanospermum to Coptosapelta (rubiaceae). Am. J. Bot. 56, 805-812. https://doi. org/10.2307/2440601.
  • Verdan, M.H., Barison, A., de Sa, E.L., Salvador, M.J., Poliquesi, C.B., Eberlin, M.N., Stefanello, M.E.A., 2010. Lactones and quinones from the tubers of Sinningia aggregata. J. Nat. Prod. 73, 1434-1437. https://doi.org/10.1021/np1002466.
  • Wang, J., Li, W., Wang, H., Lu, C., 2018. Pentaketide Ansamycin Microansamycins A-I from Micromonospora sp. reveal diverse post-PKS Modifications. Org. Lett. 20, 1058-1061. https://doi.org/10.1021/acs.orglett.7b04018.
  • Wang, Y., Liu, H., Shen, L., Yao, L., Ma, Y., Yu, D., Chen, J., Li, P., Chen, Y., Zhang, C., 2015. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography. J. Separ. Sci. 38, 4119-4126. https://doi.org/10.1002/ jssc.201500705.
  • Wikstrom, N., Bremer, B., Rydin, C., 2020. Conflicting phylogenetic signals in genomic data of the coffee family (Rubiaceae). J. Systemat. Evol. 58, 440-460. https://doi. org/10.1111/jse.12566|.
  • Wikstrom, N., Kainulainen, K., Razafimandimbison, S.G., Smedmark, J.E., Bremer, B., 2015. A revised time tree of the asterids: establishing a temporal framework for evolutionary studies of the coffee family (rubiaceae). PloS One 10, e0126690. https://doi.org/10.1371/journal.pone.0126690.
  • Wink, M., 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3-19. https://doi.org/10.1016/s0031- 9422(03)00300-5.
  • Wu, Y.-B., Zheng, C.-J., Qin, L.-P., Sun, L.-N., Han, T., Jiao, L., Zhang, Q.-Y., Wu, J.-Z., 2009. Antiosteoporotic activity of anthraquinones from Morinda officinalis on osteoblasts and osteoclasts. Molecules 14, 573-583. https://doi.org/10.3390/ molecules14010573.
  • Zeng, J.-r., Lai, X.-w., Xu, X.-h., Zhu, Y., Li, B., 2007. The Spectral Characteristics fo Twenty - e ight Triterpenoids from Medicinal Plants of Rubiaceae. Chin. Arch. Trad. Chin. Med. 25, 1045-1046.
  • Zhang, Q., Zhang, J.H., He, Y.Q., Zhang, Q.L., Zhu, B., Shen, Y., Liu, M.Q., Zhu, L.L., Xin, H.L., Qin, L.P., Zhang, Q.Y., 2020. Iridoid glycosides from Morinda officinalis How. exert anti-inflammatory and anti-arthritic effects through inactivating MAPK and NF-kappaB signaling pathways. BMC Complement. Med. Ther. 20, 172. https:// doi.org/10.1186/s12906-020-02895-7.
  • Zhang, X., Bi, Q., Wu, X., Wang, Z., Miao, Y., Tan, N., 2018. Systematic characterization and quantification of Rubiaceae-type cyclopeptides in 20 Rubia species by ultra performance liquid chromatography tandem mass spectrometry combined with chemometrics. J. Chromatogr. A 1581-1582, 43-54. https://doi.org/10.1016/j. chroma.2018.10.049.
  • Zhang, Z.Q., Wu, X.K., Song, R.T., Zhang, J.L., Wang, H.X., Zhu, J., Lu, C.H., Shen, Y.M., 2017. Ansavaricins F-I, new DNA topoisomerase inhibitors produced by Streptomyces sp S012. RSC Adv. 7, 14857-14867. https://doi.org/10.1039/ c7ra00961e.
  • Zhou, X., Zheng, C., Huang, J., You, T., 2007. Identification of herb Acanthopanax senticosus (Rupr. Et Maxim.) harms by capillary electrophoresis with electrochemical detection. Anal. Sci. 23, 705-711. https://doi.org/10.2116/analsci.23.705.
  • Zhu, Y., Zhang, L.-X., Zhao, Y., Huang, G.-D., 2009. Unusual sesquiterpene lactones with a new carbon skeleton and new acetylenes from Ajania przewalskii. Food Chem. 118, 228-238. https://doi.org/10.1016/j.foodchem.2009.04.112.