Published December 31, 2021 | Version v1
Journal article Restricted

The hydroperoxyl and superoxide anion radical scavenging activity of anthocyanidins in physiological environments: Theoretical insights into mechanisms and kinetics

  • 1. * & The University of Danang-University of Technology and Education, Danang, 550000, Viet Nam

Description

Vo, Quan V., Hoa, Nguyen Thi, Thong, Nguyen Minh, Mechler, Adam (2021): The hydroperoxyl and superoxide anion radical scavenging activity of anthocyanidins in physiological environments: Theoretical insights into mechanisms and kinetics. Phytochemistry (112968) 192: 1-8, DOI: 10.1016/j.phytochem.2021.112968, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112968

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFA1CE0FB20DD306807B03139F6BFFC8

References

  • Abd El Mohsen, M., Marks, J., Kuhnle, G., Moore, K., Debnam, E., Srai, S.K., Rice- Evans, C., Spencer, J.P., 2006. Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats. Br. J. Nutr. 95, 51-58. https://doi.org/10.1079/bjn20051596.
  • Ali, H.M., Almagribi, W., Al-Rashidi, M.N., 2016. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure-activity relationship and synthesis.
  • Food Chem. 194, 1275-1282. https://doi.org/10.1016/j.foodchem.2015.09.003.
  • Alvarez-Idaboy, J.R.l., Galano, A., 2012. On the chemical repair of DNA radicals by glutathione: hydrogen Vs electron transfer. J. Phys. Chem. B 116, 9316-9325. https://doi.org/10.1021/jp303116n.
  • Azuma, K., Ohyama, A., Ippoushi, K., Ichiyanagi, T., Takeuchi, A., Saito, T., Fukuoka, H., 2008. Structures and antioxidant activity of anthocyanins in many accessions of eggplant and its related species. J. Agric. Food Chem. 56, 10154-10159. https://doi. org/10.1021/jf801322m.
  • Basilio, N., Pina, F., 2016. Chemistry and photochemistry of anthocyanins and related compounds: a thermodynamic and kinetic approach. Molecules 21, 1502. https:// doi.org/10.3390/molecules21111502.
  • Biela, M., Rimarˇcik, J., Senajov´a, E., Kleinov´a, A., Klein, E., 2020. Antioxidant action of deprotonated flavonoids: thermodynamics of sequential proton-loss electrontransfer. Phytochemistry 180, 112528. https://doi.org/10.1016/j.
  • Bielski, B.H., Cabelli, D.E., Arudi, R.L., Ross, A.B., 1985. Reactivity of HO2/O 2 radicals in aqueous solution. J. Phys. Chem. Ref. Data 14, 1041-1100. https://doi.org/ 10.1063/1.555739.
  • Boulebd, H., Mechler, A., Hoa, N.T., Vo, Q.V., 2020. Thermodynamic and kinetic studies of the antiradical activity of 5-hydroxymethylfurfural: computational insights. New J. Chem. https://doi.org/10.1039/D0NJ01567A.
  • Cahyana, Y., Gordon, M.H., 2013. Interaction of anthocyanins with human serum albumin: influence of pH and chemical structure on binding. Food Chem. 141, 2278-2285. https://doi.org/10.1016/j.foodchem.2013.05.026.
  • Carreon-Gonzalez, M., Vivier-Bunge, A., Alvarez-Idaboy, J.R., 2019. Thiophenols, promising scavengers of peroxyl radicals: mechanisms and kinetics. J. Comput.
  • Chem. 40, 2103-2110. https://doi.org/10.1002/jcc.25862.
  • Castaneda-Arriaga t, R., Marino, T., Russo, N., Alvarez-Idaboy, J.R., Galano, A., 2020.
  • Chen, B., Ma, Y., Li, H., Chen, X., Zhang, C., Wang, H., Deng, Z., 2019. The antioxidant activity and active sites of delphinidin and petunidin measured by DFT, in vitro chemical-based and cell-based assays. J. Food Biochem. 43, e12968 https://doi.org/ 10.1111/jfbc.12968.
  • Collin, F., 2019. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 20, 2407. https://doi.org/10.3390/ ijms20102407.
  • Cordova-Gomez, M., Galano, A., Alvarez-Idaboy, J.R., 2013. Piceatannol, a better peroxyl radical scavenger than resveratrol. RSC Adv. 3, 20209-20218. https://doi. org/10.1039/C3RA42923G.
  • Dzib, E., Cabellos, J.L., Ortiz-Chi, F., Pan, S., Galano, A., Merino, G., 2019. Eyringpy: a program for computing rate constants in the gas phase and in solution. Int. J. Quant. Chem. 119, e25686 https://doi.org/10.1002/qua.25686.
  • Dzib, E., Cabellos, J.L., Ortiz-Chi, F., Pan, S., Galano, A., Merino, G., 2018. Eyringpy 1.0.2. Cinvestav, M´erida, Yucat´an.
  • Est´evez, L., Mosquera, R.A., 2008. Molecular structure and antioxidant properties of delphinidin. J. Phys. Chem. 112, 10614-10623. https://doi.org/10.1021/ jp8043237.
  • Evans, M.G., Polanyi, M., 1935. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875-894. https://doi.org/10.1039/TF9353100875.
  • Eyring, H., 1935. The activated complex in chemical reactions. J. Chem. Phys. 3, 107-115. https://doi.org/10.1063/1.1749604.
  • Fern´andez-Castro, P., Vallejo, M., San Rom´an, M.F., Ortiz, I., 2015. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J. Chem. Technol. Biotechnol. 90, 796-820. https://doi.org/10.1002/jctb.4634.
  • Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., 2016. In: Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford CT. Gaussian, Inc., Wallingford CT.
  • Furuncuoglu, T., Ugur, I., Degirmenci, I., Aviyente, V., 2010. Role of chain transfer agents in free radical polymerization kinetics. Macromolecules 43, 1823-1835.
  • Galano, A., Alvarez-Idaboy, J.R., 2014. Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods.
  • J. Comput. Chem. 35, 2019-2026. https://doi.org/10.1002/jcc.23715.
  • Galano, A., Alvarez-Idaboy, J.R., 2013. A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J. Comput. Chem. 34, 2430-2445. https://doi.org/10.1002/ jcc.23409.
  • Galano, A., Perez-Gonzalez ´´, A., 2012. On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theor. Chem. Acc. 131, 1-13. https://doi.org/10.1007/s00214-012-1265-0.
  • Galano, A., Raul Alvarez-Idaboy, J., 2019. Computational strategies for predicting free radical scavengers' protection against oxidative stress: where are we and what might follow? Int. J. Quant. Chem. 119, e25665 https://doi.org/10.1002/qua.25665.
  • Garcia-Alonso, M., Minihane, A.-M., Rimbach, G., Rivas-Gonzalo, J.C., de Pascual- Teresa, S., 2009. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma.
  • Guzman ´, R., Santiago, C., Sanchez ´, M., 2009. A density functional study of antioxidant properties on anthocyanidins. J. Mol. Struct. 935, 110-114. https://doi.org/ 10.1016/j.molstruc.2009.06.048.
  • Ingold, K.U., Pratt, D.A., 2014. Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem. Rev. 114, 9022-9046. https://doi.org/10.1021/cr500226n.
  • Jin, Y., Alimbetov, D., George, T., Gordon, M., Lovegrove, J., 2011. A randomised trial to investigate the effects of acute consumption of a blackcurrant juice drink on markers of vascular reactivity and bioavailability of anthocyanins in human subjects. Eur. J. Clin. Nutr. 65, 849-856. https://doi.org/10.1038/ejcn.2011.55.
  • Karadag, A., Ozcelik, B., Saner, S., 2009. Review of methods to determine antioxidant capacities. Food Anal. Method. 2, 41-60. https://doi.org/10.1007/s12161-008- 9067-7.
  • Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M., 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. J. Food Nutr. Res. 61, 1361779. https://doi.org/10.1080/ 16546628.2017.1361779.
  • Leon-Carmona, J.R., Galano, A., Alvarez-Idaboy, J.R., 2016. Deprotonation routes of anthocyanidins in aqueous solution, pKa values, and speciation under physiological conditions. RSC Adv. 6, 53421-53429. https://doi.org/10.1039/C6RA10818K.
  • Leopoldini, M., Marino, T., Russo, N., Toscano, M., 2004. Antioxidant properties of phenolic Compounds: H-atom versus electron transfer mechanism. J. Phys. Chem. 108, 4916-4922. https://doi.org/10.1021/jp037247d.
  • Leopoldini, M., Russo, N., Toscano, M., 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125, 288-306. https://doi.org/ 10.1016/j.foodchem.2010.08.012.
  • Marenich, A.V., Cramer, C.J., Truhlar, D.G., 2009. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378-6396. https://doi.org/10.1021/jp810292n.
  • Mari, A., Lardizabal-Guti´errez, D., Torres-Moye, E., Fuentes-Cobas, L., Balandr´an- Quintana, R.R., Camacho-D´avila, A., Quintero-Ramos, A., Glossman-Mitnik, D., 2007. Optimized structure and thermochemical properties of flavonoids determined by the CHIH (medium)-DFT model chemistry versus experimental techniques. J. Mol. Struct. 871, 114-130. https://doi.org/10.1016/j.molstruc.2007.02.008.
  • Markovi´c, J.M.D., Pejin, B., Milenkovic ´, D., Amic ´, D., Begovi´c, N., Mojovic ´, M., Markovic ´, Z.S., 2017. Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: the energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chem. 218, 440-446. https://doi.org/10.1016/j.foodchem.2016.09.106.
  • Matsumoto, H., Nakamura, Y., Hirayama, M., Yoshiki, Y., Okubo, K., 2002. Antioxidant activity of black currant anthocyanin aglycons and their glycosides measured by chemiluminescence in a neutral pH region and in human plasma. J. Agric. Food Chem. 50, 5034-5037. https://doi.org/10.1021/jf020292i.
  • Medina, M., Iuga, C., Alvarez-Idaboy ´, J., 2014. Antioxidant activity of fraxetin and its regeneration in aqueous media. A density functional theory study. RSC Adv. 4, 52920-52932. https://doi.org/10.1039/C4RA08394F.
  • Nadezhdin, A., Dunford, H., 1979. The oxidation of ascorbic acid and hydroquinone by perhydroxyl radicals. A flash photolysis study. Can. J. Chem. 57, 3017-3022. https://doi.org/10.1139/v79-491.
  • Nimse, S.B., Pal, D., 2015. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 5, 27986-28006. https://doi.org/10.1039/C4RA13315C.
  • Noda, Y., Kaneyuki, T., Mori, A., Packer, L., 2002. Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J. Agric. Food Chem. 50, 166-171. https://doi.org/10.1021/jf0108765.
  • Pop, R., Stef˘anut, M., C˘ata, A., T˘anasie, C., Medeleanu, M., 2012. Ab initio study regarding the evaluation of the antioxidant character of cyanidin, delphinidin and malvidin. Open Chem. 10, 180-186. https://doi.org/10.2478/s11532-011-0128-1.
  • Tena, N., Martin, J., Asuero, A.G., 2020. State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9, 451. https://doi.org/10.3390/antiox9050451.
  • Truhlar, D.G., Hase, W.L., Hynes, J.T., 1983. Current status of transition-state theory. J. Phys. Chem. 87, 2664-2682. https://doi.org/10.1021/jp953748q.
  • Vaganek ´, A., Rimarˇcik, J., Lukeˇs, V., Klein, E., 2012. On the energetics of homolytic and heterolytic OH bond cleavage in flavonoids. Comput. Theor. Chem. 991, 192-200. https://doi.org/10.1016/j.comptc.2012.04.014.
  • V´elez, E., Quijano, J., Notario, R., Pab´on, E., Murillo, J., Leal, J., Zapata, E., Alarc´on, G., 2009. A computational study of stereospecificity in the thermal elimination reaction of menthyl benzoate in the gas phase. J. Phys. Org. Chem. 22, 971-977.
  • Vo, Q.V., Bay, M.V., Nam, P.C., Mechler, A., 2019a. Is indolinonic hydroxylamine a promising artificial antioxidant? J. Phys. Chem. B 123, 7777-7784. https://doi.org/ 10.1021/acs.jpcb.9b05160.
  • Vo, Q.V., Mechler, A., 2020. In silico study of the radical scavenging activities of natural indole-3-carbinols. J. Chem. Inf. Model. 60, 316-321. https://doi.org/10.1021/acs. jcim.9b00917.
  • Vo, Q.V., Nam, P.C., Bay, M.V., Thong, N.M., Cuong, N.D., Mechler, A., 2018. Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Sci. Rep. 8, 12361. https://doi.org/10.1038/s41598-018- 30860-5.
  • Vo, Q.V., Nam, P.C., Van Bay, M., Thong, N.M., Mechler, A., 2019b. A theoretical study of the radical scavenging activity of natural stilbenes. RSC Adv. 9, 42020-42028. https://doi.org/10.1039/C9RA08381B.
  • Vo, Q.V., Tam, N.M., Van Bay, M., Thong, N.M., Le Huyen, T., Hoa, N.T., Mechler, A., 2020. The antioxidant activity of natural diterpenes: theoretical insights. RSC Adv. 10, 14937-14943. https://doi.org/10.1039/D0RA02681F.
  • Wang, H., Cao, G., Prior, R.L., 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45, 304-309. https://doi.org/10.1021/jf960421t.
  • Zhao, Y., Schultz, N.E., Truhlar, D.G., 2006. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theor. Comput. 2, 364-382. https://doi.org/10.1021/ct0502763.
  • Zhao, Y., Truhlar, D.G., 2008. How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J. Phys. Chem. 112, 1095-1099. https://doi.org/10.1021/jp7109127.