Published October 31, 2021 | Version v1
Journal article Restricted

Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents

  • 1. * & Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa & Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa

Description

Ahmad, Aijaz, Elisha, Ishaku Leo, Vuuren, Sandy van, Viljoen, Alvaro (2021): Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents. Phytochemistry (112864) 190: 1-17, DOI: 10.1016/j.phytochem.2021.112864, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112864

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:E865952FFFA1416FFFA73263D9168506

References

  • Abourashed, E., Galal, A., Shebl, A., Mossa, J., 2007. Enhancing effect of isoeugenol on the antimicrobial activity of isoniazid, 6-paradol and 6-shogaol. J. Herbs, Spices, Med. Plants 13, 95-103. https://doi.org/10.1080/10496470801946075.
  • Adil, M., Singh, K., Verma, P., Khan, A., 2014. Eugenol-induced suppression of biofilm-forming genes in Streptococcus mutans: an approach to inhibit biofilms. J. Glob. Antimicrob. Resist. 2, 561-565. https://doi.org/10.1016/j.jgar.2014.05.006.
  • Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L., Manzoor, N., 2011. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 30, 41-50. https://doi.org/10.1007/s10096-010-1050-8.
  • Ahmad, A., Khan, A., Khan, L., Manzoor, N., 2010a. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J. Med. Microbiol. 59, 1178-1184. https://doi.org/10.1099/jmm.0.020693-0.
  • Ahmad, A., Khan, A., Manzoor, N., 2013. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharmaceut. Sci. 48 (1- 48), 80-86. https://doi.org/10.1016/j.ejps.2012.09.016.
  • Ahmad, A., Khan, A., Manzoor, N., Khan, L., 2010b. Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb. Pathog. 48, 35-41. https://doi.org/ 10.1016/j.micpath.2009.10.001.
  • Ahmad, A., van Vuuren, S., Viljoen, A., 2014. Unravelling the complex antimicrobial interactions of essential oils - the case of Thymus vulgaris (Thyme). Molecules 19, 2896-2910. https://doi.org/10.3390/molecules19032896.
  • Ali, S., Khan, A., Ahmed, I., Musaddiq, M., Ahmed, K., Polasa, H., Rao, L., Habibullah, C., Sechi, L., Ahmed, N., 2005. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob. 4, 20. https://doi.org/10.1186/1476-0711-4-20.
  • Alma, M., Mavi, A., Yildirim, A., Digrak, M., Hirata, T., 2003. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol. Pharm. Bull. 26, 1725-1729. https://doi.org/10.1248/bpb.26.1725.
  • Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M., 2008. Biological effects of essential oils - a review. Food Chem. Toxicol. 49, 446-475. https://doi.org/10.1016/j. fct.2007.09.106.
  • Barbieri, C, Borsotto, P, 2018. Essential Oils: Market and Legislation. Potential of Essential Oils. Intech.
  • Barceloux, D., 2008. Medical Toxicology of Natural Substances: Foods, Fungi, Medicinal Herbs, Plants and Venomous Animals. Wiley, Hoboken, New Jersey, ISBN 978-0- 471-72761-3.
  • Barik, P.S.K., Singh, B.N., 2019. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Sci. Rep. 9, 6520. https://doi.org/10.1038/s41598-019-43016-w.
  • Baser, K., 2008. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharmaceut. Des. 14, 3106-3119. https://doi.org/ 10.2174/138161208786404227.
  • Ben Arfa, A., Combes, S., Preziosi-Belloy, L., Gontard, N., Chalier, P., 2006. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 43, 149-154. https://doi.org/10.1111/j.1472-765X.2006.01938.x.
  • Benchaara, C., Greathead, H., 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 166- 167, 338-355. https://doi.org/10.1016/j.anifeedsci.2011.04.024.
  • Bertrand, F., Basketter, D., Roberts, D., Lepoittevin, J., 1997. Skin sensitization to eugenol and isoeugenol in mice: possible metabolic pathways involving orthoquinone and quinone methide intermediates. Chem. Res. Toxicol. 10, 335-343. https://doi.org/10.1021/tx960087v.
  • Bi, X., Guo, N., Jin, J., Liu, J., Feng, H., Shi, J., Xiang, H., Wu, X., Dong, J., Hu, H., Yan, S., Yu, C., Wang, X., Deng, X., Yu, L., 2010. The global gene expression profile of the model fungus Saccharomyces cerevisiae induced by thymol. J. Appl. Microbiol. 108, 712-722. https://doi.org/10.1111/j.1365-2672.2009.04470.x.
  • Boonchird, C., Flegel, T., 1982. In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans. Can. J. Microbiol. 28, 1235-1241. https://doi.org/10.1139/m82-184.
  • Borris, R., 1996. Natural products research: perspectives from a major pharmaceutical company. J. Ethnopharmacol. 51, 29-38. https://doi.org/10.1016/0378-8741(95) 01347-4.
  • Boskabady, M., Jandaghi, P., Kiani, S., Hasanzadeh, L., 2005. Antitussive effect of Carum copticum in Guinea pigs. J. Ethnopharmacol. 97, 79-82. https://doi.org/10.1016/j. jep.2004.10.016.
  • Botelho, M., Nogueira, N., Bastos, G., Fonseca, S., Lemos, T., Matos, F., Montenegro, D., Heukelbach, J., Rao, V., Brito, G., 2007. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res. 40, 349-356. https://doi.org/10.1590/s0100-879x2007000300010.
  • Bouddine, L., Louaste, B., Achahbar, S., Chami, N., Chami, F., Remmal, A., 2012. Comparative study of the antifungal activity of some essential oils and their major phenolic components against Aspergillus niger using three different methods. Afr. J. Biotechnol. 11, 14083-14087. https://doi.org/10.5897/AJB11.3293.
  • Braga, P., Alfieri, M., Culici, M., Dal Sasso, M., 2007. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses 50, 502-506. https://doi.org/10.1111/j.1439-0507.2007.01412.x.
  • Braga, P., Culici, M., Alfieri, M., Dal Sasso, M., 2008. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. Agents 31, 472-477. https://doi.org/10.1016/j.ijantimicag.2007.12.013.
  • Braga, P., Dal Sasso, M., Culici, M., Spallino, A., 2010. Inhibitory activity of thymol on native and mature Gardnerella vaginalis biofilms: in vitro study. Arzneimittelforschung 60, 675-681. https://doi.org/10.1055/s-0031-1296346.
  • Burt, S., 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94, 223-253. https://doi.org/10.1016/j. ijfoodmicro.2004.03.022.
  • Chand, R.R., Jokhan, A.D., Gopalan, R.D., 2017. A mini-review of essential oils in the south pacific and their insecticidal properties. Adv. Hortic. Sci. 31, 295-310. https:// doi.org/10.13128/ahs-20833.
  • Catherine, A., Deepika, H., Negi, P., 2012. Antibacterial activity of eugenol and peppermint oil in model food systems. J. Essent. Oil Res. 24, 481-486. https://doi. org/10.1080/10412905.2012.703513.
  • Chaudhary, S.K., Sandasi, M., Makolo, F., van Heerden, F.R., Viljoen, A., 2021. Aspalathin: a rare dietary dihydrochalcone from Aspalathus linearis (rooibos tea). Phytochemistry Rev. https://doi.org/10.1007/s11101-021-09741-9.
  • Chauhan, K.R., Le, T.C., Chintakunta, P.K., Lakshman, D.K., 2017. Phyto-fungicides: structure activity relationships of the thymol derivatives against Rhizoctonia solani. J. Agric. Chem. Environ. 6, 175-185. https://doi.org/10.4236/jacen.2017.64012.
  • Chen, H., Zhang, Y., Zhong, Q., 2015. Physical and antimicrobial properties of spraydried zein - casein nanocapsules with co-encapsulated eugenol and thymol. J. Food Eng. 144, 93-102. https://doi.org/10.1016/j.jfoodeng.2014.07.021.
  • Cheng, S., Liu, J., Chang, E., Chang, S., 2008. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour. Technol. 99, 5145-5149. https://doi.org/10.1016/j.biortech.2007.09.013.
  • Cichewicz, R., Thorpe, P., 1996. The antimicrobial properties of Chile peppers (Capsicum species) and their uses in Mayan medicine. J. Ethnopharmacol. 52, 61-70. https:// doi.org/10.1016/0378-8741(96)01384-0.
  • Coimbra, M., Isacchi, B., van Bloois, L., Torano, J., Ket, A., Wu, X., Broere, F., Metselaar, J., Rijcken, C., Storm, G., Bilia, R., Schiffelers, R., 2011. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int. J. Pharm. 416, 433-442. https://doi.org/10.1016/ j.ijpharm.2011.01.056.
  • Cosentino, S., Tuberoso, C., Pisano, B., Satta, M., Mascia, V., Arzedi, E., Palmas, F., 1999. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 29, 130-132. https://doi.org/10.1046/j.1472- 765x.1999.00605.x.
  • Venuti, V., Bisignano, G., Saija, A., Trombetta, D., 2007. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J. Agric. Food Chem. 55, 6300-6308. https://doi.org/ 10.1021/jf070094x.
  • Cristina, A., Meireles, L.M., Lemos, M.F., Cesar, M., Guimar, C., Endringer, D.C., Fronza, M., Scherer, R., 2019. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24, 2471. https://doi.org/10.3390/ molecules24132471.
  • Crocoll, C., 2011. Biosynthesis of the Phenolic Monoterpenes, Thymol and Carvacrol, by Terpene Synthases and Cytochrome P450s in Oregano and Thyme. Friedrich- Schiller-Universit¨at, Jena. https://d-nb.info/1016391315/34.
  • Dalleau, S., Cateau, E., Berg`es, T., Berjeaud, J., Imbert, C., 2008. In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents 31, 572-576. https:// doi.org/10.1016/j.ijantimicag.2008.01.028.
  • Dambolena, J., L´opez, A., Meriles, J., Rubinstein, H., Zygadlo, J., 2012. Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides . A structure- propertyactivity relationship study. Food Contr. 163-170. https://doi.org/10.1016/j. foodcont.2012.05.008.
  • Davidson, P., Naidu, A., 2000. Phyto-phenols. In: Naidu, A. (Ed.), Natural Food Antimicrobial System. CRC Press, Boca Raton, FL, ISBN 9780367398453,
  • Davies, J., Davies, D., 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417-433. https://doi.org/10.1128/MMBR.00016-10.
  • De Martino, L., De Feo, V., Fratianni, F., Nazzaro, F., 2009. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat. Prod. Commun. 4, 1741-1750. https://doi.org/10.1177/1934578X0900401226.
  • De Oliveira, K., de Sousa, J., da Costa Medeiros, J., de Figueiredo, R., Magnani, M., de Siqueira Junior, J., de Souza, E., 2015. Synergistic inhibition of bacteria associated with minimally processed vegetables in mixed culture by carvacrol and 1,8- cineole. Food Contr. 47, 334-339. https://doi.org/10.1145/3132847.3132886.
  • De Oliveira Pereira, F., Mendes, J., de Oliveira Lima, E., 2013. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol. 51, 507-513. https://doi.org/10.3109/13693786.2012.742966.
  • De Sousa, J., de Azerˆedo, C., de Araujo Torres, R., da Silva Vasconcelos, M., da Conceictao, M., de Souza, E., 2012. Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. Int. J. Food Microbiol. 154, 145-151. https://doi.org/10.1016/j.ijfoodmicro.2011.12.026.
  • De Vincenzi, M., Stammati, A., De Vincenzi, A., Silano, M., 2004. Constituents of aromatic plants: carvacrol. Fitoterapia 75, 801-804. https://doi.org/10.1016/j. fitote.2004.05.002.
  • Devi, K., Nisha, S., Sakthivel, R., Pandian, S., 2010. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 130, 107-115. https://doi.org/10.1016/j. jep.2010.04.025.
  • Dewick, P., 2002. Medicinal Natural Products: a Biosynthetic Approach, Second. John Wiley and Sons Ltd, Chichester, UK. https://doi.org/10.1002/0470846275.
  • Dhara, L., Tripathi, A., 2013. Antimicrobial activity of eugenol and cinnamaldehyde against extended spectrum beta lactamase producing enterobacteriaceae by in vitro and molecular docking analysis. Eur. J. Integr. Med. 5, 527-536. https://doi.org/ 10.1016/j.eujim.2013.08.005.
  • Didry, N., Dubreuil, L., Pinkas, M., 1994. Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm. Acta Helv. 69, 25-28. https://doi.org/ 10.1016/0031-6865(94)90027-2.
  • Filho, Mouchrek, 2018. Chemical composition of Ocimum canum Sims . essential oil and the antimicrobial , antiprotozoal and ultrastructural alterations it induces in Leishmania amazonensis promastigotes. Ind. Crop. Prod. 119, 201-208. https://doi. org/10.1016/j.indcrop.2018.04.005.
  • EFSA, 2012. Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Scientific Opinion on the safety and efficacy of propenylhydroxybenzenes (chemical group 17) when used as flavourings for all animal species. EFSA J 10, 2532. https://doi.org/10.2903/j.efsa.2012.2532.
  • Elisha, I.L., Viljoen, A., 2021. Trends in Rooibos Tea (Aspalathus linearis) research (1994-2018): a scientometric assessment. South Afr. J. Bot. 137, 159-170. https:// doi.org/10.1016/j.sajb.2020.10.004.
  • Escobar, P., Milena Leal, S., Herrera, L., Martinez, J., Stashenko, E., 2010. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components. Mem. Inst. Oswaldo Cruz 105, 184-190. https://doi.org/ 10.1590/s0074-02762010000200013.
  • Ettayebi, K., Yamani, J., Rossi-Hassani, B., 2000. Synergistic effects of nisin and thymol on antimicrobial activities in Listeria monocytogenes and Bacillus subtilis. FEMS Microbiol. Lett. 183, 191-195. https://doi.org/10.1111/j.1574-6968.2000.tb08956. x.
  • Fachini- Queiroz, F., Kummer, R., Estevao -Silva, C., Dalva de Barros Carvalho, M., Cunha, J., Grespan, R., Aparecida, C., Bersani, Amado, Cuman, R., 2012. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complement. Altern. Med. 10 https://doi.org/ 10.1155/2012/657026.
  • Faria, N., Kim, J., Goncalves, L., Martins, M.L., Chan, K., Campbell, B., 2011. Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett. Appl. Microbiol. 52, 506-513. https://doi.org/10.1111/ j.1472-765X.2011.03032.x.
  • Fauci, A., Touchette, N., Folkers, G., 2005. Emerging infectious diseases: a 10-year perspective from the national Institute of allergy and infectious diseases. Emerg. Infect. Dis. 11, 519-525. https://doi.org/10.3201/eid1104.041167.
  • Filgueiras, C., Vanetti, M., 2006. Effect of eugenol on growth and Listeriolysin O production by Listeria monocytogenes. Braz. Arch. Biol. Technol. 49, 405-409. https://doi.org/10.1590/S1516-89132006000400008.
  • Gallucci, M., Oliva, M., Casero, C., Dambolena, J., Luna, A., Zygadlo, J., Demo, M., 2009. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragrance J. 24, 348-354. https://doi.org/10.1002/ffj.1948.
  • Gallucci, N., Casero, C., Oliva, M., Zygadlo, J., Demo, M., 2006. Interaction between terpenes and penicillin on bacterial strains resistant to beta-lactam antibiotics. Mol. Med. Chem. 10, 30-32. Corpus ID: 2806790.
  • George, J., Price, C., Marr, M., Myers, C., Jahnke, G., 2001. Evaluation of the developmental toxicity of isoeugenol in Sprague-Dawley (CD) rats. Toxicol. Sci. 60, 112-120. https://doi.org/10.1093/toxsci/60.1.112.
  • Gersbach, P., Wyllie, S., Sarafis, V., 2001. A new histochemical method for localization of the site of monoterpene phenol accumulation in plant secretory structures. Ann. Bot. 88, 521-525. https://doi.org/10.1006/anbo.2001.1480.
  • Ghalfi, H., Benkerroum, N., Doguiet, D., Bensaid, M., Thonart, P., 2007. Effectiveness of cell-adsorbed bacteriocin produced by Lactobacillus curvatus CWBI-B28 and selected essential oils to control Listeria monocytogenes in pork meat during cold storage. Lett. Appl. Microbiol. 44, 268-273. https://doi.org/10.1111/j.1472-765X.2006.02077.x.
  • Gill, A., Holley, R., 2006. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 108, 1-9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009.
  • Gill, A., Holley, R., 2004. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 70, 5750-5755. https://doi.org/10.1128/ AEM.70.10.5750-5755.2004.
  • Gledhill, J., Montgomery, M., Andrew, G., Walker, J., 2007. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl. Acad. Sci. Unit. States Am. 104, 13132-13637. https://doi.org/10.1073/pnas.0706290104.
  • Gochev, V.K., Girova, T., 2009. Antimicrobial activity of various essential oils against spoilage and pathogenic microorganisms isolated from meat products. Biotechnol. Biotechnol. Equip. 23, 900-904. https://doi.org/10.1080/ 13102818.2009.10818568.
  • Guo, N., Liu, J., Wu, X., Bi, X., Meng, R., Wang, X., Xiang, H., Deng, X., Yu, L., 2009. Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. J. Med. Microbiol. 58, 1074-1079. https://doi.org/ 10.1155/2021/1059274.
  • Hagan, E., Hansen, W., Fitzhugh, O., Jenner, P., Jones, W., Taylor, J., 1964. Food flavourings and compounds of related structure. II. Subacute and chronic toxicity. Food Chem. Toxicol. 5, 141-157. https://doi.org/10.1016/S0015-6264(67)82961-4.
  • Hamoud, R., Zimmermann, S., Reichling, J., Wink, M., 2014. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine 21, 443-447. https:// doi.org/10.1016/j.phymed.2013.10.016.
  • Hayriye, C., 2011. Evaluation of Natural Antimicrobial Phenolic Compounds against Foodborne Pathogens. University of Kentucky Master' s Theses, 652. https://u knowledge.uky.edu/gradschool_theses/652.
  • Helander, I., Alakomi, H., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E., Gorris, L., von Wright, A., 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 46, 3590-3595. https://doi.org/10.1021/jf980154m.
  • Hemaiswarya, S., Doble, M., 2009. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine 16, 997-1005. https://doi.org/ 10.1016/j.phymed.2009.04.006.
  • Hu, L., Ban, F., Li, H., Qian, P., Shen, Q., Zhao, Y., Mo, H., Zhou, X., 2018. Thymol induces conidial apoptosis in Aspergillus flavus via stimulating K + eruption. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.8b02117 xxx, xxx-xxx.
  • Hyldgaard, M., Mygind, T., Piotrowska, R., Foss, M., Meyer, R.L., 2015. Isoeugenol has a non-disruptive detergent-like mechanism of action. Front. Microbiol. 6, 1-14. https://doi.org/10.3389/fmicb.2015.00754.
  • Jadhav, B., Khandelwal, K., Ketkar, A., Pisal, S., 2004. Formulation and evaluation of mucoadhesive tablets containing eugenol for the treatment of periodontal diseases. Drug Dev. Ind. Pharm. 30, 195-203. https://doi.org/10.1081/ddc-120028715.
  • Jafri, H., Ansari, F.A., Ahmad, I., 2018. Prospects of essential oils in controlling pathogenic biofilm. In: New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads. Elsevier Inc., pp. 203-236. https://doi.org/10.1016/ B978-0-12-814619-4.00009-4
  • Jafri, H., Khan, M.S.A., Ahmad, I., 2019. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Phytomedicine 54, 206-213. https://doi.org/10.1016/j. phymed.2018.10.005.
  • James, R., Glen, J., 1980. Synthesis, biological evaluation, and preliminary structureactivity considerations of a series of alkylphenols as intravenous anesthetic agents. J. Med. Chem. 23, 350-357. https://doi.org/10.1021/jm00186a013.
  • Jenner, P., Hagan, E., Taylor, J., Cook, E., Fitzhugh, O., 1964. Food flavorings and compounds of related structure. I. Acute oral toxicity. Food Chem. Toxicol. 2, 327-343. https://doi.org/10.1016/S0015-6264(64)80192-9.
  • Jesus, F., Ferreiro, L., Bizzi, K., Loreto, E., Pillotto, M., Ludwig, A., Alves, S., Zanette, R., Santurio, J., 2014. In vitro activity of carvacrol and thymol combined with antifungals or antibacterials against Pythium insidiosum. J. Mycol. Med. https://doi. org/10.1016/j.mycmed.2014.10.023.
  • Kabara, J., 1991. Phenols and chelators. In: Russell, N., Gould, G. (Eds.), Food Preservatives. Blackie, Glasgow and London, pp. 200-214. https://doi.org/10.1007/ 978-0-387-30042-9.
  • Kalemba, D., Kunicka, A., 2003. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10, 813-829. https://doi.org/10.2174/0929867033457719.
  • Kamatou, G.P., Vermaak, I., Viljoen, A.M., 2012. Eugenol-from the remote maluku islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17, 6953-6981. https://doi.org/10.3390/molecules17066953.
  • Kasiotis, K.M., Tzouganaki, Z.D., Machera, K., 2018. Chromatographic determination of monoterpenes and other acaricides in honeybees : prevalence and possible synergies. Sci. Total Environ. 625, 96-105. https://doi.org/10.1016/j.scitotenv.2017.12.244.
  • Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L., Manzoor, N., 2011. Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids. FEMS Yeast Res. 11, 114-122. https://doi.org/10.1111/ j.1567-1364.2010.00697.x.
  • Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L.A., Manzoor, N., 2010. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 161, 816-823. https://doi.org/10.1016/j.resmic.2010.09.008.
  • Khan, A., Ahmad, A., Khan, L., Manzoor, N., 2010. Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine 17, 921-925. https://doi.org/10.1016/j.phymed.2010.02.012.
  • Khan, M., Ahmad, I., 2012. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother. 67, 618-621. https://doi.org/10.1093/jac/dkr512.
  • Kim, J., Dersken, F., Kolster, P., Marshall, M., Wei, C., 1995. Antibacterial activity of some essential oil component against five foodborne pathogens. J. Agric. Food Chem. 43, 2839-2845. https://doi.org/10.1021/jf00059a013.
  • Kim, Y., Morr, C., Schenz, T., 1996. Microencapsulation properties of gum Arabic and several food proteins: liquid orange oil emulsion particles. J. Agric. Food Chem. 44, 1308-1313. https://doi.org/10.1021/jf950391e.
  • Koul, O., Walia, S., Dhaliwal, G., 2008. Essential oils as green pesticides: potential and constraints. Biopestic. Int. 4, 63-84. Corpus ID: 85741148.
  • Kubo, I., Muroi, H., Himejima, M., 1993. Combination effects of antifungal nagilactones against Candida albicans and two other fungi with phenylpropanoids. J. Nat. Prod. 56, 220-226. https://doi.org/10.1021/np50092a006.
  • Kudroli, K.R., Sandhya Rao, K.P., Samartha, V., Sushma, V., 2020. Systematic literature review of blood supply chain using bibliometric visualization techniques. Int. J. Sci. Technol. Res. 9, 3056-3058. ISSN 2277-8616.
  • La Storia, A., Ercolini, D., Marinello, F., Di Pasqua, R., Villani, F., Mauriello, G., 2011. Atomic force microscopy analysis shows surface structure changes in carvacroltreated bacterial cells. Res. Microbiol. 162, 164-172. https://doi.org/10.1016/j. resmic.2010.11.006.
  • Lagouri, V., Boskou, D., 1996. Nutrient antioxidants in oregano. Int. J. Food Sci. Nutr. 47, 493-497. https://doi.org/10.3109/09637489609031878.
  • Lambert, R., Skandamis, P., Coote, P., Nycs, G., 2001. A study of minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91 (91), 453-462. https://doi.org/10.1046/j.1365- 2672.2001.01428.x.
  • Langevel, W., Veldhuizen, E., Burt, S., 2014. Synergy between essential oil components and antibiotics: a review. Crit. Rev. Microbiol. 40, 76-94. https://doi.org/10.3109/ 1040841X.2013.763219.
  • Laughlin, T., Ahmad, Z., 2010. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides. Int. J. Biol. Macromol. 46, 367-374. https://doi.org/ 10.1016/j.ijbiomac.2010.01.015.
  • Lee, S.J., Han, J.I., Lee, G.S., Park, M.J., Choi, I.G., Na, K.J., Jeung, E.B., 2007. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol. Pharm. Bull. 30, 184-188.
  • Leriche, V., Carpentier, B., 1995. Viable but nonculturable Salmonella typhimurium within single and binary species biofilms in response to chlorine treatment. J. Food Protect. 58, 1186-1191. https://doi.org/10.4315/0362-028X-58.11.1186.
  • Linnenluecke, M.K., Marrone, M., Singh, A.K., 2020. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 45, 175-194. https://doi.org/ 10.1177/0312896219877678.
  • Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3-25. https://doi.org/10.1016/ j.addr.2012.09.019.
  • Llana-Ruiz-Cabello, M., Guti´errez-Praena, D., Pichardo, S., Moreno, F., Bermudez, J., Aucejo, S., Came´an, A., 2014. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol. 64, 281-290. https://doi.org/10.1016/j.fct.2013.12.005.
  • Loughrin, J., Manukian, A., Heath, R., Turlings, T., Tumlinson, J., 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc. Natl. Acad. Sci. U.S.A. 91, 11836-11840. https://doi.org/10.1073/pnas.91.25.11836.
  • Lupetti, A., Danesi, R., Campa, M., Del Tacca, M., Kelly, S., 2002. Molecular basis of resistance to azole antifungals. Trends Mol. Med. 8, 76-81. https://doi.org/10.1016/ s1471-4914(02)02280-3.
  • Machado, M., Cavaleiro, C., Salgueiro, L., Silca, P., Custodio, J., Sousa, M., 2008. Antigiardial activity of carvacrol, thymol and eugenol. 18th Eur. Congr. Clin. Microbiol. . Infect. Dis. Baecelona, Spain, pp. 19-22.
  • Manzoor, N., Amin, M., Khan, L., 2002. Effect of phosphocreatine on H + extrusion, pHi and dimorphism in Candida albicans. Int. J. Exp. Biol. 40, 785-790. PMID: 12597547.
  • Sokovi´c, M., 2011. Chemical analysis and antimicrobial activities of the essential oils of Satureja thymbra L. and Thymbra spicata L. and their main components. Arch. Biol. Sci., Belgrade 63, 457-464. https://doi.org/10.2298/ABS1102457M.
  • Martindale, J., Holbrook, N., 2002. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1-15. https://doi.org/10.1002/jcp.10119.
  • Mathela, C., Singh, K., Gupta, V., 2010. Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Pol. Pharm. 67, 375-380. PMID: 20635533.
  • Menniti, A., Gregori, R., Neri, F., 2010. Activity of natural compounds on Fusarium verticillioides and fumonisin production in stored maize kernel. Int. J. Food Microbiol. 136, 304-309. https://doi.org/10.1016/j.ijfoodmicro.2009.10.008.
  • Miladi, H., Zmantar, T., Kouidhi, B., Chaabouni, Y., Mahdouani, K., Bakhrouf, A., Chaieb, K., 2017. Microbial Pathogenesis Use of carvacrol , thymol , and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid. Microb. Pathog. 104, 56-63. https:// doi.org/10.1016/j.micpath.2017.01.012.
  • Missall, T., Lodge, J., McEwen, J., 2004. Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. Eukaryot. Cell 3, 835-846. https://doi.org/10.1128/EC.3.4.835-846.2004.
  • Moon, S., Kim, H., Cha, J., 2011. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch. Oral Biol. 56, 907-916. https://doi.org/10.1016/j.archoralbio.2011.02.005.
  • Moreno, S., Scheyer, T., Romano, C., Vojnov, A., 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 40, 223-231. https://doi.org/10.1080/10715760500473834.
  • Nazzaro, F., Fratianni, F., Martino, L., Coppola, R., Feo, V., 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6, 1451-1474. https://doi.org/10.3390/ ph6121451.
  • Netopilova, M., Houdkova, M., Rondevaldova, J., Kmet, V., 2018. Evaluation of in vitro growth-inhibitory effect of carvacrol and thymol combination against Staphylococcus aureus in liquid and vapour phase using new broth volatilization chequerboard method. Fitoterapia 129, 185-190. https://doi.org/10.1016/j.fitote.2018.07.002.
  • Neyret, C., Herry, J.-M., Meylheuc, T., Dubois-Brissonnet, F., 2014. Plant-derived compounds as natural antimicrobials to control paper mill biofilms. J. Ind. Microbiol. Biotechnol. 41, 87-96. https://doi.org/10.1007/s10295-013-1365-4.
  • Niimi, M., Firth, N., Cannon, R., 2010. Antifungal drug resistance of oral fungi. Odontology 98, 15-25. https://doi.org/10.1007/s10266-009-0118-3.
  • Nikaido, H., 2009. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119-146. https://doi.org/10.1146/annurev.biochem.78.082907.145923.
  • Niu, D., Wang, Q.-Y., Ren, E.-F., Zeng, X.-A., Wang, L.-H., He, T.-F., Wen, Q.-H., Brennan, C.S., 2019. Multi-target antibacterial mechanism of eugenol and its combined inactivation with pulsed electric fields in a hurdle strategy on Escherichia coli. Food Contr. 106, 106742. https://doi.org/10.1016/j.foodcont.2019.106742.
  • Cioni, P., Procopio, F., Blanco, A., 2007. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 56, 519-523. https://doi.org/10.1099/jmm.0.46804-0.
  • Olasupo, N., Fitzgerald, D., Narbad, A., Gasson, M., 2004. Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. J. Food Protect. 67, 596-600. https://doi.org/10.4315/0362-028x- 67.3.596.
  • Oyedemi, S., Okoh, A., Mabinya, L., Pirochenva, G., Afolayan, A., 2009. The proposed mechanism of bactericidal action of eugenol, α- terpineol and g-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr. J. Biotechnol. 8, 1280-1286 eISSN: 1684-5315.
  • Palaniappan, K., Holley, R., 2010. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 140, 164-168. https://doi.org/10.1016/j.ijfoodmicro.2010.04.001.
  • Pare, P., Tumlinson, J., 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114, 1161-1167. https://doi.org/10.1104/ pp.114.4.1161.
  • Patil, S., Sharma, R., Srivastava, S., Navani, N., Pathania, R., 2013. Down regulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PloS One 8, e57370. https://doi. org/10.1371/journal.pone.0057370.
  • Pavela, R., 2014. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop. Prod. 60, 247-258. https://doi.org/10.1016/j.indcrop.2014.06.030.
  • Pei, R., Zhou, F., Ji, B., Xu, J., 2009. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 74, 379-383. https://doi.org/10.1111/j.1750- 3841.2009.01287.x.
  • Pemmaraju, S.C., Pruthi, P.A., Prasad, R., Pruthi, V., 2013. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J. Exp. Biol. 51, 1032-1037. PMID: 24416942.
  • P´erez-Alfonso, C., Martinez-Romero, D., Zapata, P., Serrano, M., Valero, D., Castillo, S., 2012. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int. J. Food Microbiol. 158, 101-106. https://doi.org/10.1016/j.ijfoodmicro.2012.07.002.
  • Perlin, D., Seto-Young, D., Monk, B., 2006. The plasma membrane H + ATPase of fungi. A candidate drug target? Ann. N. Y. Acad. Sci. 843, 609-617. https://doi.org/ 10.1111/j.1749-6632.1997.tb52330.x.
  • Pina-Vaz, C., Goncalves Rodrigues, A., Pinto, E., Costa-de-Oliveira, S., Tavares, C., Salgueiro, L., Cavaleiro, C., Goncalves, M., Martinezde- Oliveira, J., 2004. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Vene. J. Eur. Acad. Dermatol. Venereol. 18, 73-78. https://doi.org/10.1111/j.1468- 3083.2004.00886.x.
  • Pinto, E., Pina-Vaz, C., Salgueiro, L., Goncalves, M., Costa-de- Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A., Martinez-de- Oliveira, J., 2006. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 55, 1367-1373. https://doi.org/10.1099/jmm.0.46443- 0.
  • Pinto, E., Vale-Silva, L., Cavaleiro, C., Salgueiro, L., 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58, 1454-1462. https://doi.org/10.1099/jmm.0.010538- 0.
  • Pizzolitto, R.P., Barberis, C.L., Dambolena, J.S., Herrera, J.M., Zunino, M.P., Magnoli, C. E., Rubinstein, H.R., Zygadlo, J.A., Dalcero, A.M., 2015. Inhibitory effect of natural phenolic compounds on Aspergillus parasiticus growth. J. Chem. 1-7. https://doi.org/ 10.1155/2015/547925, 2015.
  • Plant, R.M., Dinh, L., Argo, S., Shah, M., 2019. The essentials of essential oils. Adv. Pediatr. 66, 111-122. https://doi.org/10.1016/j.yapd.2019.03.005.
  • Pol, I.E.I., Smid, E.J., 1999. Combined Action of Nisin and Carvacrol on Bacillus Cereus and Listeria Monocytogenes, vol. 29, pp. 166-170. https://doi.org/10.1046/j.1365- 2672.1999.00606.x.
  • Program, N.T., 2010. Toxicology and Carcinogenesis Studies of Isoeugenol (CAS No. 97- 54-1) in F344/N Rats and B6C3F1 Mice (Gavage Studies). PMID: 21372857.
  • Program, N.T., 2000. Report and Study Status Database: Isoeugenol (CAS NO. 97-54-1).
  • Ramos, M., Jim´enez, A., Peltzer, M., Garrigos ´, M., 2014. Development of novel nanobiocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem. 162, 149-155. https://doi.org/10.1016/j. foodchem.2014.04.026.
  • Rao, A., Zhang, Y., Muend, S., Rao, R., 2010. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob. Agents Chemother. 54, 5062-5069. https://doi.org/10.1128/ AAC.01050-10.
  • Rassu, G., Nieddu, M., Bosi, P., Trevisi, P., Colombo, M., Priori, D., Manconi, P., Giunchedi, P., Gavini, E., G, B., 2014. Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications. Phytomedicine 21, 1627-1632. https://doi.org/10.1016/j.phymed.2014.07.017.
  • Raybaudi-Massilia, R., Mosqueda-Melgar, J., Soliva-Fortuny, R., Martin-Belloso, O., 2009. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr. Rev. Food Sci. Food Saf. 8, 157-180. https://doi.org/10.1111/j.1541-4337.2009.00076.x.
  • Rinehart, K., Holt, T., Fregeau, N., Keifer, P., Wilson, G., Perun Jr., T., Sakai, R., Thompson, A., Stroh, J., Shield, L., Seigler, D., 1990. Bioactive compounds from aquatic and terrestrial sources. J. Nat. Prod. 53, 771-792. https://doi.org/10.1021/ np50070a001.
  • Robledo, S., Osorio, E., Munoz t, D., Jaramillo, L., Restrepo, A., Arango, G., V´elez, I., 2005. In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives. Agents Chemother 49, 1652-1655. https://doi.org/ 10.1128/AAC.49.4.1652-1655.2005.
  • Sakkas, H., Papadppoulou, 2017. Antimicrobial activity of basil, oregano, and thyme essential oils. J. Microbiol. Biotechnol. 27, 429-438. https://doi.org/10.4014/ jmb.1608.08024.
  • S´anchez, M., Turina, A., Garcia, D., Nolan, M., Perillo, M., 2004. Surface activity of thymol: implications for an eventual pharmacological activity. Colloids Surf. Biointerfaces 34, 77-84. https://doi.org/10.1016/j.colsurfb.2003.11.007.
  • Segvic, M.S., Kosalec, I, Mastelic, J, Pieckova, E, Pepeljnak, S, 2007. Antifungal activity of thyme (Thymus vulgaris L.) essentialoil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 44, 36-42.
  • Sikkema, J., de Bont, J., Poolman, B., 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201-222. https://doi.org/10.1128/mr.59.2.201- 222.1995.
  • Situ, H., Bobek, L., 2000. In vitro assessment of antifungal therapeutic potential of salivary histatin-5, two variants of histatin-5, and salivary mucin (MUC7) domain 1. Antimicrob. Agents Chemother. 44, 1485-1493. https://doi.org/10.1128/ AAC.44.6.1485-1493.2000.
  • Slamenova, D., Horvathova, E., 2013. Cytotoxic, anti-carcinogenic and antioxidant properties of the most frequent plant volatiles. Neoplasma 60, 343-354. https://doi. org/10.4149/neo_2013_046.
  • Slamenov´a, D., Horv´athov´a, E., Sramkov´a, M., Mars´alkov´a, L., 2007. DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma 54, 108-112. PMID: 17319782.
  • Soumya, E., Saad, I., Hassan, L., Ghizlane, Z., Hind, M., Adnane, R., 2011. Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr. J. Microbiol. Res. 5, 3229-3232. https://doi.org/10.5897/ AJMR11.275.
  • Tao, G., Irie, Y., Li, D., Keung, W., 2005. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity. Bioorg. Med. Chem. 13, 4777-4788. https://doi.org/10.1016/j.bmc.2005.04.081.
  • Tapia-rodriguez, M.R., Hernandez-mendoza, A., Gonzalez-aguilar, G.A., Martineztellez, M.A., Miranda, C., Ayala-zavala, J.F., 2017. Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and bio fi lm production on stainless steel surfaces. Food Contr. 75, 255-261. https://doi.org/10.1016/j. foodcont.2016.12.014.
  • Thompson, J., Chalchat, J., Michet, A., Linhart, Y., Ehlers, B., 2003. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol. 29, 859-880. https://doi. org/10.1023/A:1022927615442.
  • Ulrich-Merzenich, G., Panek, D., Zeitler, H., Vetter, H., Wagner, H., 2010. Drug development from natural products: exploiting synergistic effects. Indian J. Exp. Biol. 48, 208-219. PMID: 21046973.
  • Ultee, A., Kets, E., Smid, E., 1999. Mechanisms of action of carvacrol in the food- borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 65, 4606-4610. https://doi.org/ 10.1128/AEM.65.10.4606-4610.1999.
  • Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., Venkitanarayanan, K., 2013. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol. 36, 79-89. https://doi.org/10.1016/j.fm.2013.04.010.
  • Van Eck, N.J., Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523-538. https://doi.org/10.1007/ s11192-009-0146-3.
  • Van Vuuren, S., Viljoen, A., 2011. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med. 77, 1168-1182. https://doi.org/10.1055/s-0030-1250736.
  • Veras, H., Rodrigues, F., Colares, A., Menezes, I., Coutinho, H., Botelho, M., Costa, J., 2012. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia 83, 508-512. https://doi.org/10.1016/j. fitote.2011.12.024.
  • Wagner, H., Ulrich-Merzenich, G., 2009. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16, 97-110. https://doi.org/ 10.1016/j.phymed.2008.12.018.
  • Walsh, S., Maillard, J., Russell, A., Catrenich, C., Charbonneau, D., Bartolo, R., 2003. Activity and mechanisms of action of selected biocidal agents on Gram-positive and Gram-negative bacteria. J. Appl. Microbiol. 94, 240-247. https://doi.org/10.1046/ j.1365-2672.2003.01825.x.
  • Wang, L., Zhao, X., Zhu, C., Xia, X., Qin, W., Li, M., Wang, T., Chen, S., Xu, Y., Hang, B., Sun, Y., Jiang, J., Paul, L., Lei, L., Zhang, G., Hu, J., 2017. Thymol kills bacteria , reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Vet. Microbiol. 203, 202-210. https:// doi.org/10.1016/j.vetmic.2017.02.021.
  • Weber, F., de Bont, J., 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta 1286, 225-245. https://doi.org/10.1016/s0304-4157(96)00010-x.
  • Wong, S., Grant, I., Friedman, M., Elliott, C., Situ, C., 2008. Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis. Appl. Environ. Microbiol. 74, 5986-5990. https://doi.org/10.1128/AEM.00981-08.
  • Yamazaki, K., Yamamoto, T., Kawai, Y., Inoue, N., 2004. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiol. 21, 283-289. https://doi.org/10.1016/j.fm.2003.08.009.
  • Yatime, L., Buch-Pedersen, M., Musgaard, M., Morth, J., Lund Winther, A., Pedersen, B., Olesen, C., Andersen, J., Vilsen, B., Schiott, B., Palmgren, M., Moller, J., Nissen, P., Fedosova, N., 2009. P-type ATPases as drug targets: tools for medicine and science. Biochim. Biophys. Acta 1787, 207-220. https://doi.org/10.1016/j. bbabio.2008.12.019.
  • Ye, H., Shen, S., Xu, J., Lin, S., Yuan, Y., Jones, G., 2013. Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Contr. 34, 619-623. https://doi.org/10.1016/j.foodcont.2013.05.032.
  • Yen, T., Chang, S., 2008. Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresour. Technol. 99, 232-236. https://doi. org/10.1016/j.biortech.2006.11.022.
  • Petrelli, R., Acqua, S.D., Benelli, G., Sut, S., 2019. In vitro and In vivo effectiveness of carvacrol, thymol and linalool against Leishmania infantum. Molecules 24, 2072. https://doi.org/10.3390/molecules24112072.
  • Zhang, Y., Liu, Y., Qiu, J., Luo, Z., Deng, X., 2018. The herbal compound thymol protects mice from lethal infection by Salmonella typhimurium. Front. Microbiol. 9, 1-7. https://doi.org/10.3389/fmicb.2018.01022.