Published October 31, 2022
| Version v1
Journal article
Restricted
Dulcisenes C-E, polyoxygenated cyclohexenes, from Uvaria dulcis dunal and their cytotoxic activity
Creators
- 1. * & Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok, 10210, Thailand
Description
Pailee, Phanruethai, Ploypradith, Poonsakdi, Mahidol, Chulabhorn, Ruchirawat, Somsak, Prachyawarakorn, Vilailak (2022): Dulcisenes C-E, polyoxygenated cyclohexenes, from Uvaria dulcis dunal and their cytotoxic activity. Phytochemistry (113298) 202: 1-8, DOI: 10.1016/j.phytochem.2022.113298, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113298
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFE6FF93FFDFFFABFFE08328FFC2FFC9
References
- Auranwiwat, C., Maccarone, A.T., Carroll, A.W., Rattanajak, R., Kamchonwongpaisan, S., Blanksby, S., Pyne, S.G., Limtharakul, T., 2019a. Structure elucidation of cyclohexene (9Z)-octadec-9-enyl ethers isolated from the leaves of Uvaria cherrevensis (Annonaceae). Tetrahedron 75, 2336-2342. https://doi.org/10.1016/j. tet.2019.03.004.
- Auranwiwat, C., Wongsomboon, P., Thaima, T., Rattanajak, R., Kamchonwongpaisan, S., Willis, A.C., Laphookhieo, S., Pyne, S.G., Limtharakul, T., 2019b. Polyoxygenated cyclohexenes and their chlorinated derivatives from the leaves of Uvaria cherrevensis. J. Nat. Prod. 82, 101-110. https://doi.org/10.1021/acs.jnatprod.8b00794.
- Awale, S., Ueda, J.-y., Athikomkulchai, S., Abdelhamed, S., Yokoyama, S., Saiki, I., Miyatake, R., 2012. Antiausterity agents from Uvaria dac and their preferential cytotoxic activity against human pancreatic cancer cell lines in a nutrient-deprived condition. J. Nat. Prod. 75 (6), 1177-1183. https://doi.org/10.1021/np300295h.
- Bell, K.H., 1987. Selective aminolysis of benzoates and acetates of α- hydroxy acids and phenols with benzylamine and butan-1-amine. Aust. J. Chem. 40, 1723-1735. https://doi.org/10.1071/CH9871723.
- Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D., Mitchell, J.B., 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47 (4), 936-942.
- Chang, R., Wang, C., Zeng, Q., Guan, B., Zhang, W., Jin, H., 2013. Chemical constituents of the stems of Celastrus rugosus. Arch Pharm. Res. (Seoul) 36 (11), 1291-1301. https://doi.org/10.1007/s12272-013-0145-z.
- Seechamnanturakit, V., 2000. A chalcone and a dihydrochalcone from Uvaria dulcis. Phytochemistry 53 (4), 511-513. https://doi.org/10.1016/S0031-9422(99)00477- X.
- Seechamnanturakit, V., 2001. Corrigendum to "A chalcone and a dihydrochalcone from Uvaria dulcis"[Phytochemistry 53 (2000) 511-513]. Phytochemistry 58 (2), 377. https://doi.org/10.1016/S0031-9422(01)00153-4.
- Doyle, A., Griffiths, J.B. (Eds.), 1997. Mammalian Cell Culture: Essential Techniques. John Wiley and Sons Inc., New York, Weinheim, Brisbane, Toronto.
- Hodgetts, K.J., 2005. Inter- and intramolecular Mitsunobu reaction based approaches to 2-substituted chromans and chroman-4-ones. Tetrahedron 61, 6860-6870. https:// doi.org/10.1016/j.tet.2005.04.047.
- Jaipetch, T., Hongthong, S., Kuhakarn, C., Pailee, P., Piyachaturawat, P., Suksen, K., Kongsaeree, P., Prabpai, S., Nuntasaen, N., Reutrakul, V., 2019. Cytotoxic polyoxygenated cyclohexene derivatives from the aerial parts of Uvaria cherrevensis. Fitoterapia 137, 104182. https://doi.org/10.1016/j.fitote.2019.104182.
- Jolad, S.D., Hoffmann, J.J., Schram, K.H., Cole, J.R., Tempesta, M.S., Bates, R.B., 1981. Structures of zeylenol and zeylena, constituents of Uvaria zeylanica (Annonaceae). J. Org. Chem. 46 (21), 4267-4272. https://doi.org/10.1021/jo00334a033.
- Kaweetripob, W., Mahidol, C., Prawat, H., Ruchirawat, S., 2015. Cyclohexene long-chain fatty acid esters from Uvaria dulcis (Dunal). Phytochem. Lett. 12, 248-251. https:// doi.org/10.1016/j.phytol.2015.04.020.
- Khaldoun, K., Safer, A., Saidi-Besbes, S., Carboni, B., Le Gu´evel, R., Carreaux, F., 2019. An efficient solvent-free microwave-assisted synthesis of cinnamamides by amidation reaction using phenylboronic acid/lewis base co-catalytic system. Synthesis 51, 3891-3900. https://doi.org/10.1055/s-0039-1690132.
- Kijjoa, A., Bessa, J., Pinto, M.M.M., Anatachoke, C., Silva, A.M.S., Eaton, G., Herz, W., 2002. Polyoxygenated cyclohexene derivatives from Ellipeiopsis cherrevensis. Phytochemistry 59, 543-549. https://doi.org/10.1016/S0031-9422(01)00465-4.
- Kong, Y., Fu, Y.-J., Zu, Y.-G., Chang, F.-R., Chen, Y.-H., Liu, X.-L., Stelten, J., Schiebel, H.- M., 2010. Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Food Chem. 121, 1150-1155. https://doi. org/10.1016/j.foodchem.2010.01.062.
- Lambros, C., Vanderberg, J.P., 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 65, 418-420. https://doi.org/10.2307/ 3280287.
- Liao, Y.-H., Xu, L.-Z., Yang, S.-L., Dai, J., Zhen, Y.-S., Zhu, M., Sun, N.-J., 1997. Three cyclohexene oxides from Uvaria grandiflora. Phytochemistry 45 (4), 729-732. https://doi.org/10.1016/S0031-9422(97)00026-5.
- Liu, H., Zhao, F., Yang, R., Wang, M., Zheng, M., Zhao, Y., Zhang, X., Qiu, F., Wang, H., 2009. Dimeric 1,4-benzoquinone derivatives and a resorcinol derivative from Ardisia gigantifolia. Phytochemistry 70, 773-778. https://doi.org/10.1016/j. phytochem.2009.04.004.
- Masayuki, A., Yoshihiko, I., Asahi, S., Satomi, O., Hiroshi, N., Shizuo, Y., 2009. Isolation and pharmacological characterization of fatty acids from saw palmetto extract. Anal. Sci. 25 (4), 553-557. https://doi.org/10.2116/analsci.25.553.
- Nishioka, T., Watanabe, J., Kawabata, J., Niki, R., 1997. Isolation and activity of N-pcoumaroyltyramine, an α- glucosidase inhibitor in Welsh onion (Allium fistulosum). Biosc. Biotech. Biochem. 61 (7), 1138-1141. https://doi.org/10.1271/bbb.61.1138.
- Palframan, M.J., Kociok-K¨ohn, G., Lewis, S.E., 2011. Total Synthesis of (+)- grandifloracin by iron complexation of a microbial arene oxidation product. Org. Lett. 13 (2), 3150-3153. https://doi.org/10.1021/ol201057r.
- Pooma, R., 2015. Concise Encyclopedia of Plants in Thailand, Forest Botany, Forest and Plant Conservation Research Office. National Buddhist Department Printing Inc., Bangkok, p. 211.
- Pouchert, C.J., Behnke, J., 1993a. The Aldrich Library of 13 C and 1 H FT NMR Spectra: Edition I, vol. 1. Aldrich Chemical Company, Inc. Wisconsin, p. 785B.
- Pouchert, C.J., Behnke, J., 1993b. The Aldrich Library of C and H FT NMR Spectra: Edition I, vol. 1. Aldrich Chemical Company, Inc. Wisconsin, p. 782C.
- Pouchert, C.J., Behnke, J., 1993c. The Aldrich Library of 13 C and 1 H FT NMR Spectra: Edition I, vol. 2. Aldrich Chemical Company, Inc. Wisconsin, p. 1063B.
- Promchai, T., Thaima, T., Rattanajak, R., Kamchonwongpaisan, S., Pyne, S.G., Limtharakul, T., 2021. (R)-3-(8'-Hydroxyfarnesyl)-indole and other chemical constituents from the flowers of Anomianthus dulcis and their antimalarial and cytotoxic activities. Nat. Prod. Res. 35 (15), 2476-2481. https://doi.org/10.1080/ 14786419.2019.1679139.
- Seangphakdee, P., Pompimon, W., Meepowpan, P., Panthong, A., Chiranthanut, N., Banjerdpongchai, R., Wudtiwai, B., Nuntasaen, N., Pitchuanchom, S., 2013. Anti-inflammatory and anticancer activities of ( )-zeylenol from stems of Uvaria grandiflora. Sci. Asia 39, 610-614. https://doi.org/10.2306/scienceasia1513- 1874.2013.39.610.
- Sinz, A., Matusch, R., Van Els¨acker, F., Santisuk, T., Chaichana, S., Reutrakul, V., 1999. Phenolic compounds from Anomianthus dulcis. Phytochemistry 50 (6), 1069-1072. https://doi.org/10.1016/S0031-9422(98)00646-3.
- Sinz, A., Matusch, R., Santisuk, T., Chaichana, S., Reutrakul, V., 1998a. An annonaceous acetogenin from the stem of Anomianthus dulcis. Biochem. Systemat. Ecol. 26 (3), 361-362.
- Sinz, A., Matusch, R., Witte, L., Santisuk, T., Chaichana, S., Reutrakul, V., 1998b. Alkaloids from Anomianthus dulcis. Biochem. Systemat. Ecol. 26 (1), 139-141. https://doi.org/10.1016/S0305-1978(97)00134-8.
- Su, B.-N., Takaishi, Y., 1999. Morinins H K, four novel phenylpropanol ester lipid metabolites from Morina chinensis. J. Nat. Prod. 62 (9), 1325-1327. https://doi.org/ 10.1021/np990145n.
- Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science 193, 673-675. https://doi.org/10.1126/science.781840.
- Ubonopas, L., Wongsinkongman, P., Chuakul, W., Suwanborirux, K., Lee, K.H., Soonthornchareonnon, N., 2014. Bioactive flavonoids and alkaloids from Anomianthus dulcis (Dunal) J. Sinclair stem bark. Mahidol Univ. J. Pharm. Sci. 41 (3), 13-22.
- Vieira, P.C., de Alvarenga, M.A., Gottlieb, O.R., Gottlieb, H.E., 1980. 4- Hexadecenylphenol and flavonoids from Piper hispidum. J. Med. Plants Res. 39, 153-156. https://doi.org/10.1055/s-2008-1074918.
- Wang, B., Hu, H., 2013. Flavonoids from tartary buckwheat seeds. Asian J. Chem. 25 (4), 2012-2014. https://doi.org/10.14233/ajchem.2013.13277.
- Wirasathien, L., Pengsuparp, T., Moriyasu, M., Kawanish, K., Suttisri, R., 2006. Cytotoxic C-benzylated chalcone and other constituents of Ellipeiopsis cherrevensis. Arch Pharm. Res. (Seoul) 29 (6), 497-502. https://doi.org/10.1007/BF02969423.
- Yenjai, C., Wanich, S., Pitchuanchom, S., Sripanidkulchai, B., 2009. Structural modification of 5,7-dimethoxyflavone from Kaempferia parviflora and biological activities. Arch Pharm. Res. (Seoul) 32 (9), 1179-1184. https://doi.org/10.1007/ s12272-009-1900-z.
- Zeng, Q., Ye, J., Ren, J., Cheng, X.-r., Qin, J-j., Jin, H.-Z., Zhang, W.-D., 2013. Chemical constituents from Aphanamixis grandifolia. Chem. Nat. Compd. 49 (3), 486-492. https://doi.org/10.1248/cpb.58.1431.
- Zhou, H., Jian, R., Kang, J., Huang, X., Li, Y., Zhuang, C., Yang, F., Zhang, L., Fan, X., Wu, T., Wu, X., 2010. Anti-inflammatory effects of Caper (Capparis spinosa L.) fruit; aqueous extract and the isolation of main phytochemicals. J. Agric. Food Chem. 58, 12717-12721. https://doi.org/10.1021/jf1034114.