Published April 30, 2022 | Version v1
Journal article Restricted

Feature-based molecular networking-guided discovery of siderophores from a marine mesophotic zone Axinellida sponge-associated actinomycete Streptomyces diastaticus NBU2966

  • 1. * & ** & Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832,

Description

Liu, Yang, Ding, Lijian, Deng, Yueting, Wang, Xiao, Cui, Wei, He, Shan (2022): Feature-based molecular networking-guided discovery of siderophores from a marine mesophotic zone Axinellida sponge-associated actinomycete Streptomyces diastaticus NBU2966. Phytochemistry (113078) 196: 1-11, DOI: 10.1016/j.phytochem.2021.113078, URL: http://dx.doi.org/10.1016/j.phytochem.2021.113078

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF8C4B5BFFF7FFCFFF8A0C62FFDBFFD0
URL
http://publication.plazi.org/id/FF8C4B5BFFF7FFCFFF8A0C62FFDBFFD0

References

  • Actis, L.A., Fish, W., Crosa, J.H., Kellerman, K., Ellenberger, S.R., Hauser, F.M., Sanders- Loehr, J., 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775 (pJM1). J. Bacteriol. 167 (1), 57-65. https://doi.org/10.1128/ jb.167.1.57-65.1986.
  • Adusumilli, R., Mallick, P., 2017. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339-368. https://doi.org/10.1007/978-1-4939-6747-6_ 23.
  • Alcover, C.F., Bernadat, G., Kabran, F.A., Pogam, P.L., Leblanc, K., Ramox, A.E.F., Gallard, J.-F., Mouray, E., Grellier, P., Poupon, E., Beniddir, M.A., 2020. Molecular networking reveals serpentinine-related bisindole alkaloids from Picralima nitida, a previously well-investigated species. J. Nat. Prod. 83 (4), 1207-1216. https://doi. org/10.1021/acs.jnatprod.9b01247.
  • Aoki, T., Yoshizawa, H., Yamawaki, K., Yokoo, K., Sato, J., Hisakawa, S., Hisakawa, S., Hasegawa, Y., Kusano, H., Sano, M., Sugimoto, H., Nishitani, Y., Sato, T., Tsuji, M., Nakamura, R., Nishikawa, T., Yamano, Y., 2018. Cefiderocol (S-649266), A new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: structure activity relationship. Eur. J. Med. Chem. 155, 847-868. https:// doi.org/10.1016/j.ejmech.2018.06.014.
  • Bunbamrung, N., Intaraudom, C., Dramae, A., Thawai, C., Tadtong, S., Auncharoen, P., Pittayakhajonwut, P., 2020. Antibacterial, antitubercular, antimalarial and cytotoxic substances from the endophytic Streptomyces sp. TBRC7642. Phytochemistry 172, 112275. https://doi.org/10.1016/j.phytochem.2020.112275.
  • Cox, C.D., Rinehart, K.L., Moore, M.L., Cook Jr., J.C., 1981. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A 78 (7), 4256-4260. https://doi.org/10.1073/pnas.78.7.4256.
  • Crosa, J.H., Walsh, C.T., 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66 (2), 223-249. https://doi.org/ 10.1128/MMBR.66.2.223-249.2002.
  • Ernst, M., Kang, K.B., Caraballo-Rodriguez, A.M., Nothias, L.F., Wandy, J., Chen, C., Wang, M., Rogers, S., Medema, M.H., Dorrestein, P.C., van der Hooft, J.J.J., 2019. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9 (7), 144. https://doi.org/10.3390/ metabo9070144.
  • 1 Shenderovich, I.G., Leadbeater, N.E., 2012. Difference between H NMR signals of primary amide protons as a simple spectral index of the amide intramolecular hydrogen bond strength. J. Phys. Org. Chem. 25, 287-295. https://doi.org/10.1002/ poc.1910.
  • Guan, L.L., Kamino, K., 2001. Bacterial response to siderophore and quorum-sensing chemical signals in the seawater microbial community. BMC Microbiol. 1, 27. https://doi.org/10.1186/1471-2180-1-27.
  • Guo, X., Chen, J., Beuchat, L.R., Brackett, R.E., 2000. PCR detection of Salmonella enterica serotype Montevideo in and on raw tomatoes using primers derived from hilA. Appl. Environ. Microbiol. 66 (12), 5248-5252. https://doi.org/10.1128/ AEM.66.12.5248-5252.2000.
  • Hider, R.C., Kong, X., 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637-657. https://doi.org/10.1039/b906679a.
  • Inahashi, Y., Zhou, S., Bibb, M.J., Song, L., Al-Bassam, M.M., Bibb, M.J., Challis, G.L., 2017. Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline Cmethylation by a type B radical-SAM methylase homologue. Chem. Sci. 8 (4), 2823-2831. https://doi.org/10.1039/C6SC03533G.
  • Lamont, I.L., Beare, P.A., Ochsner, U., Vasil, A.I., Vasil, M.L., 2002. Siderophoremediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A 99 (10), 7072-7077. https://doi.org/10.1073/ pnas.092016999.
  • Li, L.B., Dan, W.J., Tan, F.F., Cui, L.H., Yuan, Z.P., Wu, W.J., Zhang, J.W., 2014. Synthesis and antibacterial activities of yanglingmycin analogues. Chem. Pharm. Bull. 63, 33-37. https://doi.org/10.1248/cpb.c14-00578.
  • Liao, H.-X., Zheng, C.-J., Huang, G.-L., Mei, R.-Q., Nong, X.-H., Shao, T.-M., Chen, G.-Y., Wang, C.-Y., 2019. Bioactive polyketide derivatives from the mangrove-derived fungus Daldinia eschscholtzii HJ004. J. Nat. Prod. 82 (8), 2211-2219. https://doi. org/10.1021/acs.jnatprod.9b00241.
  • Lin, Z., Antemano, R.R., Hughen, R.W., Tianero, M.D.B., Peraud, O., Haygood, M.G., Concepcion, G.P., Olivera, B.M., Light, A., Schmidt, E.W., 2010. Pulicatins A-E, neuroactive thiazoline metabolites from cone snail-associated bacteria. J. Nat. Prod. 73 (11), 1922-1926. https://doi.org/10.1021/np100588c.
  • Liu, S.-L., Zhou, L., Chen, H.-P., Liu, J.-K., 2022. Sesquiterpenes with diverse skeletons from histone deacetylase inhibitor modified cultures of the basidiomycete Cyathus stercoreus (Schwein.) De Toni HFG134. Phytochemitsy 195, 113048. https://doi.org/ 10.1016/j.phytochem.2021.113048.
  • Moreno-Ulloa, A., Diaz, V.S., Tejeda-Mora, J.A., Contreras, M.I.M., Castillo, F.D., Guerrero, A., Sanchez, R.G., Mendoza-Porras, O., Duhalt, R.V., Licea-Navarro, A., 2020. Chemical profiling provides insights into the metabolic machinery of hydrocarbon-degrading deep-sea microbes. mSystems 5 (6). https://doi.org/ 10.1128/mSystems.00824-20 e00824-20.
  • Nikolaivits, E., Agrafiotis, A., Termentzi, A., Machera, K., Le Goff, G., Alvarez ยด, P., Chavanich, S., Benayahu, Y., Ouazzani, J., Fokialakis, N., Topakas, E., 2019. Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar. Drugs 17 (10), 564. https://doi.org/10.3390/md17100564.
  • Olson, J.B., Kellogg, C.A., 2010. Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol. Ecol. 73 (1), 17-30. https://doi. org/10.1111/j.1574-6941.2010.00862.x.
  • Page, M.G.P., 2013. Siderophore conjugates. Ann. N. Y. Acad. Sci. 1277, 115-126. https://doi.org/10.1111/nyas.12024.
  • Pluskal, T., Castillo, S., Villar-Briones, A., Oresic, M., 2010. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 11, 395. https://doi.org/10.1186/1471-2105- 11-395.
  • Rinehart, K.L., Staley, A.L., Wilson, S.R., Ankenbauer, R.G., Cox, C.D., 1995. Stereochemical assignment of the pyochelins. J. Org. Chem. 60, 2786-2791. https:// doi.org/10.1021/jo00114a029.
  • Sasaki, O., Igarashi, Y., Saito, N., Furumai, T., 2002. Watasemycins A and B, new antibiotics produced by Streptomyces sp. TP-A0597. J. Antibiot. 55 (3), 249-255. https://doi.org/10.7164/antibiotics.55.249.
  • Shaaban, K.A., Saunders, M.A., Zhang, Y., Tran, T., Elshahawi, S.I., Ponomareva, L.V., Wang, X., Zhang, J., Copley, G.C., Sunkara, M., Kharel, M.K., Morris, A.J., Hower, J. C., Tremblay, M.S., Prendergast, M.A., Thorson, J.S., 2017. Spoxazomicin D and oxachelin C, potent neuroprotective carboxamides from the appalachian coal fireassociated isolate Streptomyces sp. RM-14-6. J. Nat. Prod. 80 (1), 2-11. https://doi. org/10.1021/acs.jnatprod.6b00948.
  • Shindo, K., Takenaka, A., Noguchi, T., Hayakawa, Y., Seto, H., 1989. Thiazostatin A and thiazostatin B, new antioxidants produced by Streptomyces tolurosus. J. antibiot. 42 (10), 1526-1529. https://doi.org/10.7164/antibiotics.42.1526.
  • Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., Fan, T.W.-M., Fiehn, O., Goodacre, R., Griffin, J.L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A.N., Lindon, J.C., Marriott, P., Nicholls, A.W., Reily, M. D., Thaden, J.J., Viant, M.R., 2007. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) Metabolomics standards initiative (MSI). Metabolomics 3 (3), 211-221. https://doi.org/10.1007/s11306- 007-0082-2.
  • Tai, A., Watanabe, H., Harada, T., 2006. Stereochemical studies of the hydrogenation with asymmetrically modified nickel catalysts; the hydrogenation of methyl 2Alkyl3- oxobutyrate. Bull. Chem. Soc. Jpn. 52 (5), 1468-1472. https://doi.org/10.1246/ bcsj.52.1468.
  • Tan, X., Xie, H., Zhang, B., Zhou, J., Dou, Z., Wang, X., Wang, N., 2021. A novel ivermectin-derived compound D4 and its antimicrobial/biofilm properties against MRSA. Antibiotics (Basel) 10, 208.
  • Terra, L., Ratcliffe, N., Castro, H.C., Vicente, A.C.P., Dyson, P., 2021. Biotechnological potential of Streptomyces siderophores as new antibiotics. Curr. Med. Chem. 28, 1407-1421. https://doi.org/10.3390/antibiotics10020208.
  • Tyler, A.R., Mosaei, H., Morton, S., Waddell, P.G., Wills, C., Mcfarlane, W., Gray, J., Goodfellow, M., Errington, J., Allenby, N., Hall, M.J., 2017. Structural reassignment and absolute stereochemistry of madurastatin C1 (MBJ-0034) and the related aziridine siderophores: madurastatins A1, B1, and MBJ-0035. J. Nat. Prod. 80 (5), 1558-1562. https://doi.org/10.1021/acs.jnatprod.7b00082.
  • Wang, L.-Y., Wu, J., Yang, Z., Wang, X.-J., Fu, Y., Liu, S.-Z., Wang, H.-M., Zhu, W.-L., Zhang, H.-Y., Zhao, W.-M., 2013. (M)- and (P)-bicelaphanol A, dimeric trinorditerpenes with promising neuroprotective activity from Celastrus orbiculatus. J. Nat. Prod. 76, 745-749. https://doi.org/10.1021/np3008182.
  • Wang, T., Zhou, J., Zou, J., Shi, Y., Zhou, W., Shao, P., Yu, T., Cui, W., Li, X., Wu, X., Ye, J., Yan, X., Naman, C.B., He, S., 2021. Discovery of cymopolyphenols A-F from a marine mesophotic zone aaptos sponge-associated fungus cymostachys sp. NBUF082. Front. Microbiol. 12, 638610. https://doi.org/10.3389/fmicb.2021.638610.
  • Wuest, W.M., Sattely, E.S., Walsh, C.T., 2009. Three siderophores from one bacterial enzymatic assembly line. J. Am. Chem. Soc. 131, 5056-5057. https://doi.org/ 10.1021/ja900815w.
  • Yang, W., Dostal, L., Rosazza, J.P., 1993. Aeruginol [2-(2'-hydroxyphenyl)-4- hydroxymethylthiazole], a new secondary metabolite from Pseudomonas aeruginosa. J. Nat. Prod. 56 (11), 1993-1994. https://doi.org/10.1021/np50101a021.