Published September 30, 2022 | Version v1
Journal article Restricted

Furostanol saponins from Asparagus racemosus as potential hypoglycemic agents

  • 1. * & Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India & * & Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India

Description

Pandey, Alka Raj, Ahmad, Shadab, Singh, Suriya Pratap, Mishra, Anjali, Bisen, Amol Chhatrapati, Sharma, Gaurav, Ahmad, Ishbal, Shukla, Sanjeev K., Bhatta, Rabi Sankar, Kanojiya, Sanjeev, Tamrakar, Akhilesh Kumar, Sashidhara, Koneni V. (2022): Furostanol saponins from Asparagus racemosus as potential hypoglycemic agents. Phytochemistry (113286) 201: 1-13, DOI: 10.1016/j.phytochem.2022.113286, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113286

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:782E4474C6103742A12AFF8EFF504C02

References

  • Agrawal, P.K., 2005. Assigning stereo diversity of the 27-Me group of furostane-type steroidal saponins via NMR chemical shifts. Steroids 70, 715-724. https://doi.org/ 10.1016/j.steroids.2005.04.001.
  • 1 Agrawal, P.K., Bunsawansong, P., Morris, G.A., 1997. Complete assignment of the H and 13
  • C NMR spectra of steroidal sapogenins: smilagenin and sarsasapogenin. Magn. Reson. Chem. 35, 441-446. https://doi.org/10.1002/(SICI)1097-458X(199707)35: 7<441: AID-OMR104>3.0.CO;2-Q.
  • 1 Agrawal, P.K., Bunsawansong, P., Morris, G.A., 1998. Dependence of the H NMR chemical shifts of ring F resonances on the orientation of the 27-methyl group of spirostane-type steroidal sapogenins. Phytochemistry 47, 255-257. https://doi.org/ 10.1016/s0031-9422(97)00481-0.
  • Ahmad, S., Pandey, A.R., Singh, S.P., Singh, S., Sashidhara, K.V., Tamrakar, A.K., 2022. Antiglycation activity of β- glucogallin from Asparagus racemosus. Nat. Prod. Res. https://doi.org/10.1080/14786419.2022.2025799. In press.
  • Al Mamun, A., Hossain, M., Uddin, M.S., Islam, M.T., Hossain, S., Hossain, M.S., Hossain, M.F., Sujan, A.R., Rashid, M., Rahman, M.M., Rahman, A.F.M.T., 2017. Comparison of the hypoglycemic, hypolipidemic and hepatoprotective effects of Asparagus racemosus linn. In combination with gliclazide and pioglitazone on alloxan-induced diabetic rats. Pharmacol. Pharm. 8, 52-74. https://doi.org/ 10.4236/pp.2017.82004.
  • Bopana, N., Saxena, S., 2007. Asparagus racemosus -ethnopharmacological evaluation and conservation needs. J. Ethnopharmacol. 110, 1-15. https://doi.org/10.1016/j. jep.2007.01.001.
  • Chhonker, Y.S., Sleightholm, R.L., Murry, D.J., 2019. Bioanalytical method development and validation of moxidectin in plasma by LC-MS/MS: application to in vitro metabolism. Biomed. Chromatogr. 33, e4389. https://doi.org/10.1002/bmc.4389.
  • Funayama, S., Hikino, H., 1979. Hypotensive principles of Diospyros kaki leaves. Chem. Pharm. Bull. 27, 2865-2868. https://doi.org/10.1248/cpb.27.2865.
  • Gautam, M., Saha, S., Bani, S., Kaul, A., Mishra, S., Patil, D., Satti, N.K., Suri, K.A., Gairola, S., Suresh, K., Jadhav, S., 2009. Immunomodulatory activity of Asparagus racemosus on systemic Th1/Th2 immunity: implications for immunoadjuvant potential. J. Ethnopharmacol. 121, 241-247. https://doi.org/10.1016/j. jep.2008.10.028.
  • Gowans, G.J., Hawley, S.A., Ross, F.A., Hardie, D.G., 2013. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metabol. 18, 556-566. https://doi.org/ 10.1016/j.cmet.2013.08.019.
  • Hayes, P.Y., Jahidin, A.H., Lehmann, R., Penman, K., Kitching, W., De Voss, J.J., 2006. Structural revision of shatavarins I and IV, the major components from the roots of Asparagus racemosus. Tetrahedron Lett. 47, 6965-6969. https://doi.org/10.1016/j. tetlet.2006.07.121.
  • Hayes, P.Y., Jahidin, A.H., Lehmann, R., Penman, K., Kitching, W., De Voss, J.J., 2008. Steroidal saponins from the roots of Asparagus racemosus. Phytochemistry 69, 796-804. https://doi.org/10.1016/j.phytochem.2007.09.001.
  • Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Carling, D., Hardie, D.G., 1996. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMPactivated protein kinase. J. Biol. Chem. 271, 27879-27887. https://doi.org/ 10.1074/jbc.271.44.27879.
  • Huang, Z., Li, H., Zhang, Q., Tan, X., Lu, F., Liu, H., Li, S., 2015. Characterization of preclinical in vitro and in vivo pharmacokinetics properties for KBP-7018, a new tyrosine kinase inhibitor candidate for treatment of idiopathic pulmonary fibrosis. Drug Des. Dev. Ther. 9, 4319-4328. https://doi.org/10.2147/DDDT.S83055.
  • Kamat, J.P., Boloor, K.K., Devasagayam, T.P., Venkatachalam, S.R., 2000. Antioxidant properties of Asparagus racemosus against damage induced by gamma-radiation in rat liver mitochondria. J. Ethnopharmacol. 425-435. https://doi.org/10.1016/s0378- 8741(00)00176-8.
  • Kim, K.H., Kim, M.A., Moon, E., Kim, S.Y., Choi, S.Z., Son, M.W., Lee, K.R., 2011. Furostanol saponins from the rhizomes of Dioscorea japonica and their effects on NGF induction. Bioorg. Med. Chem. Lett. 21, 2075-2078. https://doi.org/10.1016/j. bmcl.2011.02.003.
  • Kousaxidis, A., Petrou, A., Lavrentaki, V., Fesatidou, M., Nicolaou, I., Geronikaki, A., 2020. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur. J. Med. Chem. 207, 112742 https://doi.org/10.1016/j.ejmech.2020.112742.
  • Li, Q., Deng, X., Jiang, N., Meng, L., Xing, J., Jiang, W., Xu, Y., 2021. Identification and structure-activity relationship exploration of uracil-based benzoic acid and ester derivatives as novel dipeptidyl Peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Eur. J. Med. Chem. 225, 113765 https://doi.org/10.1016/j. ejmech.2021.113765.
  • Maedler, K., Carr, R.D., Bosco, D., Zuellig, R.A., Berney, T., Donath, M.Y., 2005. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J. Clin. Endocrinol. Metab. 90, 501-506. https://doi.org/10.1210/jc.2004-0699.
  • Mandal, S.C., Kumar, C.K.A., Lakshmi, S.M., Sinha, S., Murugesan, T., Saha, B.P., Pal, M., 2000a. Antitussive effect of Asparagus racemosus root against sulfur dioxide-induced cough in mice. Fitoterapia 71, 686-689. https://doi.org/10.1016/s0367-326x(00) 00151-9.
  • Mandal, S.C., Nandy, A., Pal, M., Saha, B.P., 2000b. Evaluation of antibacterial activity of Asparagus racemosus willd. root. Phytother Res. 14, 118-119. https://doi.org/ 10.1002/(sici)1099-1573(200003)14:2<118::aid-ptr493>3.0.co;2-p.
  • Mandal, D., Banerjee, S., Mondal, N.B., Chakravarty, A.K., Sahu, N.P., 2006. Steroidal saponins from the fruits of Asparagus racemosus. Phytochemistry 67, 1316-1321. https://doi.org/10.1016/j.phytochem.2006.04.005.
  • Mitra, S.K., Prakash, N.S., Sundaram, R., 2012. Shatavarins (containing Shatavarin IV) with anticancer activity from the roots of Asparagus racemosus. Indian J. Pharmacol. 44, 732-736. https://doi.org/10.4103/0253-7613.103273.
  • Mizuno, C.S., Chittiboyina, A.G., Kurtz, T.W., Pershadsingh, H.A., Avery, M.A., 2008. Type 2 diabetes and oral antihyperglycemic drugs. Curr. Med. Chem. 15, 61-74. https://doi.org/10.2174/092986708783330656.
  • Naidoo, P., Rambiritch, V., Neil, B., Selvarajah, S., 2014. Optimal utilisation of sulphonylureas in resource-constrained settings. Cardiovasc. J. Afr. 25, 83-85. https://doi.org/10.5830/CVJA-2014-007.
  • Nakanishi, T., Inada, A., Kambayashi, K., Yoneda, K., 1985. Flavonoid glycosides of the roots of Glycyrrhiza Uralensis. Phytochemistry 24, 339-341. https://doi.org/ 10.1016/S0031-9422(00)83548-7.
  • Patel, O.P., Mishra, A., Maurya, R., Saini, D., Pandey, J., Taneja, I., Raju, K.S., Kanojiya, S., Shukla, S.K., Srivastava, M.N., Wahajuddin, M., Tamrakar, A.K., Srivastava, A.K., Yadav, P.P., 2016. Naturally occurring carbazole alkaloids from murrayakoenigii as potential antidiabetic agents. J. Nat. Prod. 79, 1276-1284. https://doi.org/10.1021/acs.jnatprod.5b00883.
  • Puppala, M., Ponder, J., Suryanarayana, P., Reddy, G.B., Petrash, J.M., LaBarbera, D.V., 2012. The isolation and characterization of β- glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One 7, e31399. https://doi.org/10.1371/ journal.pone.0031399.
  • Quang, D.N., Nanthalath, P., Khamko, V.A., Soulinhong, X., Vidavone, V., 2018. Acemosin- a cytotoxic 20-norsteroid from Asparagus racemosus. Fitoterapia 131, 221-224. https://doi.org/10.1016/j.fitote.2018.11.002.
  • Sairam, K., Priyambada, S., Aryya, N.C., Goel, R.K., 2003. Gastroduodenal ulcer protective activity of Asparagus racemosus: an experimental, biochemical and histological study. J. Ethnopharmacol. 86, 1-10. https://doi.org/10.1016/s0378- 8741(02)00342-2.
  • Saxena, V.K., Chourasia, S., 2001. A new isoflavone from the roots of Asparagus racemosus. Fitoterapia 72, 307-309. https://doi.org/10.1016/S0367-326X(00) 00315-4.
  • Sekine, T., Fukasawa, N., Kashiwagi, Y., Ruangrungsi, N., Murakoshi, I., 1994. Structure of asparagamine A: a novel polycyclic alkaloid from Asparagus racemosus. Chem. Pharm. Bull. 42, 1360-1362. https://doi.org/10.1248/cpb.42.1360.
  • Sekine, T., Fukasawa, N., Murakoshi, I., Ruangrungsi, N., 1997. A 9, 10- dihydrophenanthrene from Asparagus racemosus. Phytochemistry 44, 763-764. https://doi.org/10.1016/S0031-9422(96)00579-1.
  • Sharma, U., Saini, R., Bobita, Kumar, N., Singh, B., 2009. Steroidal saponins from Asparagus racemosus. Chem. Pharm. Bull. 57, 890-893. https://doi.org/10.1248/ cpb.57.890.
  • Siddiqui, N.A., Ali, M., Ahmad, A., Khan, T.H., Ahmad, A., 2013. New ursane glycoside from the roots of Asparagus racemosus. Asian J. Chem. 25, 8557-8560. https://doi. org/10.14233/ajchem.2013.14837.
  • Sidiq, T., Khajuria, A., Suden, P., Singh, S., Satti, N.K., Suri, K.A., Srinivas, V.K., Krishna, E., Johri, R.K., 2011. A novel sarsasapogenin glycoside from Asparagus racemosus elicits protective immune responses against HBsAg. Immunol. Lett. 135, 129-135. https://doi.org/10.1016/j.imlet.2010.10.013.
  • Smita, S.S., Sammi, S.R., Laxman, T.S., Bhatta, R.S., Pandey, R., 2017. Shatavarin IV elicits lifespan extension and alleviates Parkinsonism in Caenorhabditis elegans. Free Radic. Res. 51, 954-969. https://doi.org/10.1080/10715762.2017.1395419.
  • Smita, S.S., Trivedi, M., Tripathi, D., Pandey-Rai, S., Pandey, R., 2021. Neuromodulatory potential of Asparagus racemosus and its bioactive molecule Shatavarin IV by enhancing synaptic acetylcholine level and nAChR activity. Neurosci. Lett. 764, 136294 https://doi.org/10.1016/j.neulet.2021.136294.
  • Tamrakar, A.K., Jaiswal, N., Yadav, P.P., Maurya, R., Srivastava, A.K., 2011. Pongamol from Pongamia pinnata stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells. Mol. Cell. Endocrinol. 339, 98-104. https://doi.org/ 10.1016/j.mce.2011.03.023.
  • Tang, W.Z., Ding, X.B., Xin, Y.Z., 2004. A new lignan glycoside from the flower of Castanea mollissima Blume. Acta Pharm. Sin. 39, 531-533. https://pubmed.ncbi.nlm. nih.gov/15493844/.
  • Taniguchi, C.M., Emanuelli, B., Kahn, C.R., 2006. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85-96. https://doi.org/ 10.1038/nrm1837.
  • Thakur, S., Kaurav, H., Chaudhary, G., 2021. Shatavari (Asparagus Racemosus) - the best female reproductive tonic. Int. J. Res. Rev. 8 (5), 73-84. https://doi.org/10.52403/ ijrr.20210511.
  • Wang, B., Zhang, J., Pang, X., Yuan, J., Yang, J., Yang, Y., Gao, L., Zhang, J., Fan, Z., He, L., Yue, W., Li, Y., Pei, X., Ma, B., 2020. Furostanol saponins from Trillium tschonoskii promote the expansion of human cord blood hematopoietic stem and progenitor cells. J. Nat. Prod. 83, 2567-2577. https://doi.org/10.1021/acs. jnatprod.9b01268.
  • Wesam, E.M., El-Senosi, Y.A., Aziza, S.A., Ahmad, S.A., 2018. Antidiabetic and kidney protective effect of Asparagus racemosus in alloxan induced diabetes in rats. World J. Pharm. Pharmaceut. Sci. 7, 102-114. https://doi.org/10.20959/wjpps20184-11226.
  • Wiboonpun, N.P., Phuwapraisirisan, S., 2004. Identification of antioxidant compound from Asparagus racemosus. Phytother Res. 18, 771-773. https://doi.org/10.1002/ ptr.1526.
  • Zaid, H., Antonescu, C.N., Randhawa, V.K., Klip, A., 2008. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem. J. 413, 201-215. https://doi.org/10.1042/BJ20080723.