Published July 31, 2022 | Version v1
Journal article Restricted

MAPKK2/4/5/7-MAPK3-JAZs modulate phenolic acid biosynthesis in Salvia miltiorrhiza

Description

Xie, Yongfeng, Ding, Meiling, Yin, Xuecui, Wang, Guanfeng, Zhang, Bin, Chen, Lingxiang, Ma, Pengda, Dong, Juane (2022): MAPKK2/4/5/7-MAPK3-JAZs modulate phenolic acid biosynthesis in Salvia miltiorrhiza. Phytochemistry (113177) 199: 1-10, DOI: 10.1016/j.phytochem.2022.113177, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113177

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

References

  • Cao, W.Z., Wang, Y., Shi, M., Hao, X.L., Zhao, W.W., Wang, Y., Ren, J., Kai, G.Y., 2018. Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front. Plant Sci. 9, 544. https://doi.org/10.3389/ fpls.2018.00554.
  • Cao, Y., Chen, R., Wang, W.T., Wang, D.H., Cao, X.Y., 2021. SmSPL6 induces phenolic acid biosynthesis and affects root development in Salvia miltiorrhiza. Int. J. Mol. Sci. 22, 7895. https://doi.org/10.3390/ijms22157895.
  • Chen, C.J., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y.H., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009.
  • Chen, H.M., Zou, Y., Shang, Y.L., Lin, H.Q., Wang, Y.J., Cai, R., Tang, X.Y., Zhou, J.M., 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146, 368-376. https://doi.org/10.1104/ pp.107.111740.
  • Chen, J., Wang, L.H., Yuan, M., 2021a. Update on the roles of rice MAPK cascades. Int. J. Mol. Sci. 22, 1679. https://doi.org/10.3390/ijms22041679.
  • Chen, R., Cao, Y., Wang, W.T., Li, Y.H., Wang, D.H., Wang, S.Q., Cao, X.Q., 2021b. Transcription factor SmSPL7 promotes anthocyanin accumulation and negatively regulates phenolic acid biosynthesis in Salvia miltiorrhiza. Plant Sci. 310, 110993. https://doi.org/10.1016/j.plantsci.2021.110993.
  • Deng, C.P., Hao, X.L., Shi, M., Fu, R., Wang, Y., Zhang, Y., Zhou, W., Feng, Y., Makunga, N.P., Kai, G.Y., 2019. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci. 284, 1-8. https://doi.org/10.1016/j.plantsci.2019.03.007.
  • Deng, C.P., Wang, Y., Huang, F.F., Lu, S.J., Zhao, L.M., Ma, X.Y., Kai, G.Y., 2020. SmMYB2 promotes salvianolic acid biosynthesis in the medicinal herb Salvia miltiorrhiza. J. Integr. Plant Biol. 62, 1688-1702. https://doi.org/10.1111/ jipb.12943.
  • Di, P., Zhang, L., Chen, J.F., Tan, H.X., Xiao, Y., Dong, X., Zhou, X., Chen, W.S., 2013. 13C tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem. Biol. 8, 1537-1548. https://doi.org/10.1021/cb3006962.
  • Ding, K., Pei, T.L., Bai, Z.Q., Jia, Y.Y., Ma, P.D., Liang, Z.S., 2017. SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots. Sci. Rep. 7 https://doi.org/ 10.1038/s41598-017-04909-w.
  • Dong, J.E., Wan, G.W., Liang, Z.S., 2010. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 148, 99-104. https://doi. org/10.1016/j.jbiotec.2010.05.009.
  • Du, T.Z., Niu, J.F., Su, J., Li, S.S., Guo, X.R., Li, L., Cao, X.Y., Kang, J.F., 2018. SmbHLH37 functions antagonistically with SmMYC2 in regulating jasmonatemediated biosynthesis of phenolic acids in Salvia miltiorrhiza. Front. Plant Sci. 9, 1720. https://doi.org/10.3389/fpls.2018.01720.
  • Eckardt, N.A., 2011. Induction of phytoalexin biosynthesis: WRKY33 is a target of MAPK signaling. Plant Cell 23, 1190. https://doi.org/10.1105/tpc.111.230413.
  • Genot, B., Lang, J.L., Berriri, S., Garmier, M., Gilard, F., Pateyron, S., Haustraete, K., Van Der Straeten, D., Hirt, H., Colcombet, J., 2017. Constitutively active Arabidopsis MAP Kinase 3 triggers defense responses involving salicylic acid and SUMM2 resistance protein. Plant Physiol. 174, 1238-1249. https://doi.org/10.1104/ pp.17.00378.
  • Guo, T., Lu, Z.Q., Shan, J.X., Ye, W.W., Dong, N.Q., Lin, H.X., 2020. ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell 32, 2763-2779. https://doi.org/ 10.1105/tpc.20.00351.
  • Han, L., Li, G.J., Yang, K.Y., Mao, G.H., Wang, R.G., Liu, Y.D., Zhang, S.Q., 2010. Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J. 64, 114-127. https://doi.org/10.1111/j.1365- 313X.2010.04318.x.
  • Hao, G.P., Jiang, X.Y., Feng, L., Tao, R., Li, Y.L., Huang, L.Q., 2016. Cloning, molecular characterization and functional analysis of a putative R2R3-MYB transcription factor of the phenolic acid biosynthetic pathway in S. miltiorrhiza Bge. f. alba. Tissue Organ Cult. 124, 151-168. https://doi.org/10.1007/s11240-015-0883-3.
  • He, Y.Q., Hong, G.J., Zhang, H.H., Tan, X.X., Li, L.L., Kong, Y., Sang, T., Xie, K.L., Wei, J., Li, J.M., Yan, F., Wang, P.C., Tong, H.N., Chu, C.C., Chen, J.P., Sun, Z.T., 2020. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4. Plant Cell 32, 2806-2822. https://doi.org/10.1105/tpc.19.00499.
  • He, Y.X., Meng, X.Z., 2020. MAPK signaling: emerging roles in lateral root formation. Trends Plant Sci. 25, 126-129. https://doi.org/10.1016/j.tplants.2019.11.006.
  • He, Y.X., Xu, J., Wang, X.Y., He, X.M., Wang, Y.X.Y., Zhou, J.G., Zhang, S.Q., Meng, X.Z., 2019. The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to Botrytis cinerea. Plant Cell 31, 2206-2222. https://doi.org/10.1105/tpc.19.00239.
  • Huang, Q., Sun, M.H., Yuan, T.P., Wang, Y., Shi, M., Lu, S.J., Tang, B.P., Pan, J.X., Wang, Y., Kai, G.Y., 2019. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem. 274, 368-375. https://doi.org/10.1016/j.foodchem.2018.08.119.
  • Ichimura, K., 2002. Mitogen activated protein kinase cascades in plant: a new nomenclature. Trends Plant Sci. 7 https://doi.org/10.1016/s1360-1385 (02)02302- 6.
  • Jamshed, M., Sankaranarayanan, S., Abhinandan, K., Samuel, M.A., 2020. Stigma receptivity is controlled by functionally redundant MAPK pathway components in Arabidopsis. Mol. Plant 13, 1582-1593. https://doi.org/10.1016/j. molp.2020.08.015.
  • Jia, Y.Y., Bai, Z.Q., Pei, T.L., Ding, K., Liang, Z.S., Gong, Y.H., 2017. The protein kinase SmSnRK2.6 positively regulates phenolic acid biosynthesis in Salvia miltiorrhiza by interacting with SmAREB1. Front. Plant Sci. 8 https://doi.org/10.3389/ fpls.2017.01384.
  • Komis, G., Samajova, O., Ovecka, M., Samaj, J., 2018. Cell and developmental biology of plant mitogen-activated protein kinases. Ann. Rev. 69, 1-6. https://doi.org/ 10.1146/annurev-arplant-042817-040314.
  • Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi. org/10.1093/molbev/msw054.
  • Lee, D., Lal, N.K., Lin, Z.D., Ma, S., Liu, J., Castro, B., Toruno, T., Dinesh-Kumar, S.P., Coaker, G., 2020. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat. Commun. 11, 1838. https://doi.org/10.1038/s41467-020-15601-5.
  • Lei, L., Li, Y., Wang, Q., Xu, J., Chen, Y., Yang, H., Ren, D., 2014. Activation of MKK9- MPK3/MPK6 enhances phosphate acquisition in Arabidopsis thaliana. New Phytol. 203, 1146-1160. https://doi.org/10.1111/nph.12872.
  • Li, L., Liu, Y.C., Huang, Y., Li, B., Ma, W., Wang, D.H., Cao, X.Y., Wang, Z.Z., 2021a. Genome-wide identification of the TIFY family in Salvia miltiorrhiza reveals that SmJAZ3 interacts with SmWD40-170, a relevant protein that modulates secondary metabolism and development. Front. Plant Sci. 12 https://doi.org/10.3389/ fpls.2021.630424.
  • Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., Zhang, S., 2012. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 8, e1002767 https://doi.org/10.1371/journal.pgen.1002767.
  • Li, L., Wang, D.H., Zhou, L., Yu, X.D., Yan, X.Y., Zhang, Q., Li, B., Liu, Y.C., Zhou, W., Cao, X.Y., Wang, Z.Z., 2020a. JA-responsive transcription factor SmMYB97 promotes phenolic acid and tanshinone accumulation in Salvia miltiorrhiza. J. Agric. Food Chem. 68, 14850-14862. https://doi.org/10.1021/acs.jafc.0c05902.
  • Li, S.N., Wang, W.Y., Gao, J.L., Yin, K.Q., Wang, R., Wang, C.C., Petersen, M., Mundy, J., Qiu, J.L., 2016. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28, 2866-2883. https://doi.org/ 10.1105/tpc.16.00130.
  • Li, W.R., Bai, Z.Q., Pei, T.L., Yang, D.F., Mao, R.J., Zhang, B.X., Liu, C.F., Liang, Z.S., 2019. SmGRAS1 and SmGRAS2 regulate the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Front. Plant Sci. https://doi.org/10, 10.3389/ fpls.2019.01367.
  • Li, S.S., Wu, Y.C., Kuang, J., Wang, H.Q., Du, T.Z., Huang, Y.Y., Zhang, Y., Cao, X.Y., Wang, Z.Z., 2018. SmMYB111 Is a key factor to phenolic acid biosynthesis and interacts with both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. J. Agr. Food Chem. 66, 8069-8078. https://doi.org/10.1021/acs.jafc.8b02548.
  • Li, W.R., Xing, B.C., Mao, R.J., Bai, Z.Q., Yang, D.F., Xu, J.Y., Liang, Z.S., 2020b. SmGRAS3 negatively responds to GA signaling while promotes tanshinones biosynthesis in Salvia miltiorrhiza. Ind. Crop. Prod. 144, 112004. https://doi.org/ 10.1016/j.indcrop.2019.112004.
  • Li, Y., Liu, K., Tong, G., Xi, C., Liu, J., Zhao, H., Wang, Y., Ren, D., Han, S., 2021b. MPK3/ MPK6-mediated ERF72 phosphorylation positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexinbiosynthesis enzymes. J. Exp. Bot. https://doi.org/10.1093/jxb/erab415.
  • Liu, X.J., An, X.H., Liu, X., Hu, D.G., Wang, X.F., You, C.X., Hao, Y.J., 2017. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. J. Exp. Bot. 68, 2977-2990. https://doi. org/10.1093/jxb/erx150.
  • Liu, X.Y., Singh, S.K., Patra, B., Liu, Y.L., Wang, B.W., Wang, J.S., Pattanaik, S., Yuan, L., 2021. Protein phosphatase NtPP2C2b and MAP kinase NtMPK4 act in concert to modulate nicotine biosynthesis. J. Exp. Bot. 72, 1661-1676. https://doi.org/ 10.1093/jxb/eraa568.
  • Liu, Y.D., Zhang, S.Q., 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399. https://doi.org/ 10.1105/tpc.104.026609.
  • Lu, X.Y., Liang, X.Y., Li, X., Shen, P.X., Cao, X.Y., Chen, C., Song, S.H., Wang, D.H., Wang, Z.Z., Zhang, Y., 2020. Genome-wide characterisation and expression profiling of the LBD family in Salvia miltiorrhiza reveals the function of LBD50 in jasmonate signaling and phenolic biosynthesis. Ind. Crop. Prod. 144, 112006. https://doi.org/ 10.1016/j.indcrop.2019.112006.
  • Ma, P.D., Liu, J.L., Zhang, C.L., Liang, Z.S., 2013. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol. 170, 1253-1262. https://doi.org/10.1007/s12010-013-0265-4.
  • Mao, G.H., Meng, X.Z., Liu, Y.D., Zheng, Z.Y., Chen, Z.X., Zhang, S.Q., 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639-1653. https:// doi.org/10.1105/tpc.111.084996.
  • Meng, X., Xu, J., He, Y., Yang, K., Mordorski, B., Liu, Y., Zhang, S., 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25, 1126-1142. https://doi.org/10.1105/tpc.112.109074.
  • Menzel, W., Stenzel, I., Helbig, L.M., Krishnamoorthy, P., Neumann, S., Eschen- Lippold, L., Heilmann, M., Lee, J., Heilmann, I., 2019. A PAMP-triggered MAPK cascade inhibits phosphatidylinositol 4,5-bisphosphate production by PIP5K6 in Arabidopsis thaliana. New Phytol. 224, 833-847. https://doi.org/10.1111/ nph.16069.
  • Mine, A., Berens, M.L., Nobori, T., Anver, S., Fukumoto, K., Winkelmuller, T.M., Takeda, A., Becker, D., Tsuda, K., 2017. Pathogen exploitation of an abscisic acidand jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity. Proc. Natl. Acad. Sci. Unit. States Am. 114, 7456-7461. https://doi.org/ 10.1073/pnas.1702613114.
  • Paul, P., Singh, S.K., Patra, B., Sui, X.Y., Pattanaik, S., Yuan, L., 2017. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol. 213, 1107-1123. https://doi.org/10.1111/nph.14252.
  • Pei, T., Ma, P., Ding, K., Liu, S., Jia, Y., Ru, M., Dong, J., Liang, Z., 2018. SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. J. Exp. Bot. 69, 1663-1678. https:// doi.org/10.1093/jxb/erx484.
  • Peng, J.J., Wu, Y.C., Wang, S.Q., Niu, J.F., Cao, X.Y., 2020. SmbHLH53 is relevant to jasmonate signaling and plays dual roles in regulating the genes for enzymes in the pathway for salvianolic acid B biosynthesis in Salvia miltiorrhiza. Gene 756, 144920. https://doi.org/10.1016/j.gene.2020.144920.
  • Petersen, M., Simmonds, M.S.J., 2003. Rosmarinic acid. Phytochemistry 62, 121-125. https://doi.org/10.1016/s0031-9422 (02)00513-7.
  • Ren, J., Fu, L., Nile, S.H., Zhang, J., Kai, G.Y., 2019. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front. Pharmacol. 10, 753. https://doi.org/10.3389/fphar.2019.00753.
  • Shi, M., Zhou, W., Zhang, J.L., Huang, S.X., Wang, H.Z., Kai, G.Y., 2016. Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins. Sci. Rep. 6 https://doi. org/10.1038/srep20919.
  • Shi, M., Du, Z.Y., Hua, Q., Kai, G.Y., 2021. CRISPR/Cas9-mediated targeted mutagenesis of bZIP2 in Salvia miltiorrhiza leads to promoted phenolic acid biosynthesis. Ind. Crop. Prod. 167, 113560. https://doi.org/10.1016/j.indcrop.2021.113560.
  • Su, J.B., Zhang, M.M., Zhang, L., Sun, T.F., Liu, Y.D., Lukowitz, W., Xu, J., Zhang, S.Q., 2017. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29, 526-542. https:// doi.org/10.1105/tpc.16.00577.
  • Sun, M.H., Shi, M., Wang, Y., Huang, Q., Yuan, T.P., Wang, Q., Wang, C., Zhou, W., Kai, G.Y., 2019. The AP2/ERF transcription factor SmERF115 positively regulates the biosynthesis of phenolic acids in Salvia miltiorrhiz. J. Exp. Bot. 70, 243-254. https://doi.org/10.1093/jxb/ery349.
  • Thulasi Devendrakumar, K., Li, X., Zhang, Y.L., 2018. MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell. Mol. Life Sci. 75, 2981-2989. https://doi.org/10.1007/s00018-018-2839-3.
  • Wu, S.J., Zhu, B., Qin, L.P., Rahman, K., Zhang, L., Han, T., 2021. Transcription factor: a powerful tool to regulate biosynthesis of active ingredients in Salvia miltiorrhiza. Front. Plant Sci. 12, 622011. https://doi.org/10.3389/fpls.2021.622011.
  • Xie, Y.F., Ding, M.L., Zhang, B., Yang, J., Pei, T.L., Ma, P.D., Dong, J.E., 2020. Genome-wide characterization and expression profiling of MAPK cascade genes in Salvia miltiorrhiza reveals the function of SmMAPK3 and SmMAPK1 in secondary metabolism. BMC Genom. 21 https://doi.org/10.1186/s12864-020-07023-w.
  • Xing, B.C., Liang, L.J., Liu, L., Hou, Z.N., Yang, D.F., Yan, K.J., Zhang, X.M., Liang, Z.S., 2018. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 37, 1681-1692. https://doi.org/10.1007/s00299-018-2339-9.
  • Xu, H.B., Song, J.Y., Luo, H.M., Zhang, Y.J., Li, Q.S., Zhu, Y.J., Xu, J., Li, Y., Song, C., Wang, B., Sun, W., Shen, G.A., Zhang, X., Qian, J., Ji, A.J., Xu, Z.C., Luo, X., He, L., Li, C.Y., Sun, C., Yan, H.X., Cui, G.H., Li, X.W., Li, X.E., Wei, J.H., Liu, J.Y., Wang, Y. T., Hayward, A., Nelson, D., Ning, Z., Peters, R.J., Qi, X.Q., Chen, S.L., 2016. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol. Plant 9, 949-952. https://doi.org/10.1016/j.molp.2016.03.010.
  • Yan, Y.P., Wang, Z.Z., 2007. Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tissue Organ Cult. 88, 175-184. https://doi.org/10.1007/s11240-006-9187-y.
  • Yang, L.Y., Zhang, Y., Guan, R.X., Li, S., Xu, X.W., Zhang, S.Q., Xu, J., 2020. Coregulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways. J. Integr. Plant Biol. 62, 1780-1796. https://doi. org/10.1111/jipb.12973.
  • Yang, R., Wang, S.S., Zou, H.L., Li, L., Li, Y.H., Wang, D.H., Xu, H.X., Cao, X.Y., 2021. R2R3-MYB transcription factor SmMYB52 positively regulates biosynthesis of salvianolic acid B and inhibits root growth in Salvia miltiorrhiza. Int. J. Mol. Sci. 22, 9538. https://doi.org/10.3390/ijms22179538.
  • Yu, H.Z., Li, D.Y., Yang, D.F., Xue, Z.Y., Li, J., Xing, B.C., Yan, K.J., Han, R.L., Liang, Z.S., 2021. SmKFB5 protein regulates phenolic acid biosynthesis by controlling the degradation of phenylalanine ammonia-lyase in Salvia miltiorrhiza. J. Exp. Bot. 72, 4915-4929. https://doi.org/10.1093/jxb/erab172.
  • Zhang, H.H., Xu, J.F., Chen, H.M., Jin, W.B., Liang, Z.S., 2021. Characterization of NAC family genes in Salvia miltiorrhiza and NAC2 potentially involved in the biosynthesis of tanshinones. Phytochemistry 191, 112932. https://doi.org/10.1016/j. phytochem.2021.112932.
  • Zhang, J.X., Zhou, L.B., Zheng, X.Y., Zhang, J.J., Yang, L., Tan, R.H., Zhao, S.J., 2017. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 36, 1297-1309. https://doi.org/10.1007/ s00299-017-2154-8.
  • Zhang, M.M., Su, J.B., Zhang, Y., Xu, J., Zhang, S.Q., 2018. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr. Opin. Plant Biol. 45, 1-10. https://doi.org/10.1016/j.pbi.2018.04.012.
  • Zhang, S.C., Ma, P.D., Yang, D.F., Li, W.J., Liang, Z.S., Liu, Y., Liu, F.H., 2013. Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza. PLoS One 8, e73259. https://doi.org/10.1371/journal.pone.0073259.
  • Zheng, H., Jing, L., Jiang, X.H., Pu, C.J., Zhao, S.S., Yang, J., Guo, J., Cui, G.H., Tang, J. F., Ma, Y., Yu, M.Y., Zhou, X.T., Chen, M.L., Lai, C.J.S., Huang, L.Q., Shen, Y., 2021. The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza. New Phytol. 231, 1940-1955. https://doi.org/10.1111/nph.17463.
  • Zhou, J.G., Wang, X.Y., He, Y.X., Sang, T., Wang, P.C., Dai, S.J., Zhang, S.Q., Meng, X.Z., 2020. Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis. Plant Cell 32, 2621-2638. https://doi.org/10.1105/ tpc.19.00971.
  • Zhou, W., Li, S., Maoz, I., Wang, Q., Xu, M., Feng, Y., Hao, X.L., Du, Z.Y., Kai, G.Y., 2021a. SmJRB1 positively regulates the accumulation of phenolic acid in Salvia miltiorrhiza. Ind. Crop. Prod. 164, 113417. https://doi.org/10.1016/j. indcrop.2021.113417.
  • Zhou, W., Shi, M., Deng, C.P., Lu, S.J., Huang, F.F., Wang, Y., Kai, G.Y., 2021b. The methyl jasmonate-responsive transcription factor SmMYB1 promotes phenolic acid biosynthesis in Salvia miltiorrhiza. Hortic. Res. 8 https://doi.org/10.1038/s41438- 020-00443-5.
  • Zhou, Y.Y., Sun, W., Chen, J.F., Tan, H.X., Xiao, Y., Li, Q., Ji, Q., Gao, S.H., Chen, L., Chen, S.L., Zhang, L., Chen, W.S., 2016. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Sci. Rep. 6 https://doi.org/10.1038/srep22852.
  • Zhu, D., Chang, Y., Pei, T., Zhang, X.Y., Liu, L., Li, Y., Zhuang, J.H., Yang, H.L., Qin, F., Song, C.P., Ren, D.T., 2020. The MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J. 102, 747-760. https://doi.org/10.1111/tpj.14660.
  • Zhu, Q., Shao, Y., Ge, S., Zhang, M., Zhang, T., Hu, X., Liu, Y., Walker, J., Zhang, S., Xu, J., 2019. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence. Native Plants 5, 414-423. https://doi.org/10.1038/s41477- 019-0396-x.