Published September 30, 2022 | Version v1
Journal article Restricted

Phenolic fingerprints of the Pacific seagrass Phyllospadix torreyi - Structural characterization and quantification of undescribed flavonoid sulfates

Description

Grignon-Dubois, Micheline, Rezzonico, Bernadette, Blanchet, Hugues (2022): Phenolic fingerprints of the Pacific seagrass Phyllospadix torreyi - Structural characterization and quantification of undescribed flavonoid sulfates. Phytochemistry (113256) 201: 1-15, DOI: 10.1016/j.phytochem.2022.113256, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113256

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:5E2D4511FFEBFFD1FFBBFFFA5A78FFA8
URL
http://publication.plazi.org/id/5E2D4511FFEBFFD1FFBBFFFA5A78FFA8

References

  • Achamlale, S., Rezzonico, B., Grignon-Dubois, M., 2009. Rosmarinic acid from beach waste: isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chem. 113, 878-883 https//doi.org/10.1016/j.foodchem.2008.07.040.
  • Amoah, S.K., Sandjo, L.P., Kratz, J.M., Biavatti, M.W., 2016. Rosmarinic acidpharmaceutical and clinical aspects. Planta Med. 82, 388-406 https//doi.org/ 10.1055/s-0035-1568274.
  • Barron, D., Varin, L., Ibrahim, R.K., Harborne, J.B., Williams, C.A., 1988. Sulphated flavonoids: an update. Phytochemistry 27, 2375-2395. https://doi.org/10.1016/ 0031-9422(88)87003-1.
  • Blair, L.M., Calvert, M.B., Sperry, J., 2017. Flavoalkaloids-isolation, biological activity, and total synthesis. Alkaloids - Chem. Biol. 77, 85-115. https://doi.org/10.1016/bs. alkal.2016.04.001.
  • Bojilov, D., Dagnon, S., Ivanov, I., 2017. New insight into the flavonoid composition of Chenopodium botrys. Phytochem. Lett. 20, 316-321. https://doi.org/10.1016/j. phytol.2017.01.015.
  • Chen, X., Yao, Z., Peng, X., Wu, L., Wu, H., Ou, Y., Lai, J., 2020. Eupafolin alleviates cerebral ischemia/reperfusion injury in rats via blocking the TLR4/NF-κB signaling pathway. Mol. Med. Rep. 22 (6), 5135-5144. https://doi.org/10.3892/ mmr.2020.11637.
  • Cooper, L.W., McRoy, C.P., 1988. Anatomical adaptations to rocky substrates and surf exposure by the seagrass genus Phyllospadix. Aquat. Bot. 32 (4), 365-381. https:// doi.org/10.1016/0304-3770(88)90108-8.
  • David, V., 2019. Statistics in Environmental Sciences. ISTE edition and Wiley. https:// doi.org/10.1002/9781119649724.
  • den Hartog, C., Kuo, J., 2006. Taxonomy and biogeography of seagrasses, in A. W. D. Larkum et al. (eds.), Seagrasses: Biology, Ecology and Conservation, pp. 1-23. Springer. Printed in the Netherlands. ISBN 10 1 4020 2942 X.
  • Drew, E.A., 1983. Sugars, cyclitols and seagrass phylogeny. Aquat. Bot. 15, 387-408. https://doi.org/10.1016/0304-3770(83)90007-4.
  • El-Hawary, S.S., El-Sofany, R.H., Abdel-Monem, A.R., Ashour, R.S., Sleem, A.A., 2012. Polyphenolics content and biological activity of Plectranthus amboinicus (Lour.) Spreng growing in Egypt (Lamiaceae). Phcog. J. 4 (32), 45-54. https://doi.org/ 10.5530/pj.2012.32.9.
  • Enerstvedt, K.H., Lundberg, A., Sjotun, K., Fadnes, P., Jordheim, M., 2017. Characterization and seasonal variation of individual flavonoids in Zostera marina and Zostera noltii from Norwegian coastal waters. Biochem. Syst. Ecol. 74, 42-50. https://doi.org/10.1016/j.bse.2017.08.003.
  • Fautin, D., Dalton, P., Incze, L.S., Leong, J.A., Pautzke, C., Rosenberg, A., Sandifer, P., Sedberry, G., Tunnell Jr., J.W., Abbott, I., Brainard, R.E., Brodeur, M., Eldredge, L. G., Feldman, M., Moretzsohn, F., Vroom, P.S., Wainstein, M., Wolff, N., 2010. An overview of marine biodiversity in United States waters. PLoS One 5 (8), e11914. https://doi.org/10.1371/journal.pone.0011914.
  • Flamini, G., Pardini, M., Morell, I., 2001. A flavonoid sulphate and other compounds from the roots of Centaurea bracteata. Phytochemistry 58, 1229-1233. https://doi. org/10.1016/s0031-9422(01)00345-4.
  • Greenham, J., Harborne, J.B., Williams, C.A., 2003. Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV. Spectral analysis. Phytochem. Anal. 14, 100-118. https://doi.org/10.1002/pca.693.
  • Grignon-Dubois, M., Rezzonico, B., 2017. High value-added biomolecules from beach waste of marine origin - screening for potential candidates among seagrass of the Cymodoceaceae family. TOBCJ 5, 83-94. https://doi.org/10.2174/ 1874847301705010083.
  • Grignon-Dubois, M., Rezzonico, B., 2018. Phenolic chemistry of the seagrass Zostera noltei Hornem. Part 1: first evidence of three infraspecific flavonoid chemotypes in three distinctive geographical regions. Phytochemistry 146, 91-101. https://doi. org/10.1016/j.phytochem.2017.12.006.
  • Grignon-Dubois, M., Rezzonico, B., Alcoverro, T., 2012. Regional scale patterns in seagrass defences: phenolic acid content in Zostera noltii. Estuar. Coast Shelf Sci. 114, 18-22. https://doi.org/10.1016/j.ecss.2011.09.010.
  • Harborne, J.B., 1977. The plant and its biochemical adaptation to the environment. In: Introduction to Ecological Biochemistry. Academic Press, London, pp. 1-32. https:// doi.org/10.1016/C2009-0-03518-1.
  • Hawas, U.W., Abou El-Kassem, L.T., 2017. Thalassiolin D: a new flavone O -glucoside sulphate from the seagrass Thalassia hemprichii. Nat. Prod. Res. 31 (20), 369-2374. https://doi.org/10.1080/14786419.2017.1308367.
  • He, L., Wu, Y., Lin, L., Wang, J., Wu, Y., Chen, Y., Yi, Z., Liu, M., Pang, X., 2011. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2- mediated PI3K/Akt/mTOR signalling pathway. Cancer Sci. 102, 219-225. https:// doi.org/10.1111/j.1349-7006.2010.01778.x.
  • Hern´andez-Sebasti`a, C., Varin, L., Marsolais, F., 2008. Sulfotransferases from plants, algae and phototrophic bacteria. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (Eds.), Sulfur Metabolism in Phototrophic Organism. Advances in Photosynthesis and Respiration, vol. 27. Springer, Dordrecht, pp. 111-130.
  • Holmer, M., Hasler-Sheetal, H., 2014. Sulfide intrusion in seagrasses assessed by stable sulphur isotopes-synthesis of current results. Front. Mar. Sci. 1, 64. https://doi.org/ 10.3389/fmars.2014.00064.
  • Kaplan, I.R., Emery, K.O., Rittenbebg, S.C., 1963. The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochem. Cosmochim. Acta 27 (4), 297-331. https://doi.org/10.1016/0016-7037(63)90074- 7.
  • Kim, S.R., Park, M.J., Lee, M.K., Sung, S.H., Park, E.J., Kim, J., Kim, S.Y., Oh, T.H., Markelonis, G.J., Kim, Y.C., 2002. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med. 32 (7), 596-604. https://doi.org/10.1016/S0891-5849(02)00751-7.
  • Kim, H., Jeong, H., Hong, J.W., Ju, E.K., Chang-Suk, K., Youngwan, S., 2016. Evaluation of flavonoids from Zostera asiatica as antioxidants and nitric oxide inhibitors. Biotechnol. Bioproc. Eng. 21 (6), 823-829. https://doi.org/10.1007/s12257-016- 0567-9.
  • Krylova, N.V., Popov, A.M., Leonova, G.N., Artiukov, A.A., Maistrovskaia, O.S., 2011. Comparative study of antiviral activity of luteolin and 7, 3'-disulfate luteolin. Antibiot. Chemother. 56, 7-10. PMID: 22856150.
  • Kuo, J., den Hartog, C., 2001. Seagrass taxonomy and identification keys. In: Short, F.T., Coles, R.G. (Eds.), Global Seagrass Research Methods. Elsevier Science B.V., Amsterdam, ISBN 0 444 50891 0, pp. 31-58.
  • Kurth, C., Welling, M., Pohnert, G., 2015a. Sulfated phenolic acids from Dasycladales siphonous green algae. Phytochemistry 117, 417-423. https://doi.org/10.1016/j. phytochem.2015.07.010.
  • Kurth, C., Welling, M., Pohnert, G., 2015b. Sulfation mediates activity of zosteric acid against biofilm formation. Biofouling 31, 253-263. https://doi.org/10.1080/ 08927014.2015.1034697.
  • Kwak, J.Y., Seok, J.K., Suh, H.J., Choi, Y.H., Hong, S.S., Kim, D.S., Boo, Y.C., 2016. Antimelanogenic effects of luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino. Br. J. Dermatol. 175, 501-511. https://doi.org/10.1111/bjd.14496.
  • Laabir, M., Grignon-Dubois, M., Masseret, E., Rezzonico, B., Soteras, G., Rouquette, M., Rieuvilleneuve, F., Cecchi, P., 2013. Algicidal effects of Zostera marina L. and Zostera noltii Hornem. extracts on the neuro-toxic bloom-forming dinoflagellate Alexandrium catenella. Aquat. Bot. 111, 16-25. https://doi.org/10.1016/j.aquabot.2013.07.010.
  • Lee, H.-G., Yu, K.-A., Oh, W.-K., Baeg, T.-W., Oh, H.-C., Ahn, J.-S., Jang, W.-C., Kim, J.- W., Lim, J.-S., Choe, Y.-K., Yoon, D.-Y., 2005. Inhibitory effect of jaceosidin isolated from Artemisia argyi on the function of E6 and E7 oncoproteins of HPV 16. J. Ethnopharmacol. 98 (3), 39-43. https://doi.org/10.1016/j.jep.2005.01.054.
  • Lee, C.W., Lin, Z.C., Hsu, L.F., Fang, J.Y., Chiang, Y.C., Tsai, M.H., Lee, M.H., Li, S.Y., Hu, S.C., Lee, I.T., Yen, F.L., 2016. Eupafolin ameliorates COX-2 expression and PGE2 production in particulate pollutants-exposed human keratinocytes through ROS/MAPKs pathways. J. Ethnopharmacol. 189, 300-309. https://doi.org/10.1016/ j.jep.2016.05.002.
  • Lee, S.W., Kim, J.H., Song, H., Seok, J.K., Hong, S.S., Boo, Y.C., 2019. Luteolin 7-sulfate attenuates melanin synthesis through inhibition of CREB- and MITF-mediated tyrosinase expression. Antioxidants 8, 87. https://doi.org/10.3390/antiox8040087.
  • Les, D.H., 2020. Aquatic Monocotyledons of North America: Ecology, Life History, and Systematics. CRC Press, ISBN 9781138054936.
  • Les, D.H., Cleland, M.A., Waycott, M., 1997. Phylogenetic studies in Alismatidae. II. Evolution of marine angiosperms (seagrasses) and hydrophily. Syst. Bot. 22, 443-463. https://doi.org/10.2307/2419820.
  • Lin, Y., Hung, C., Tsai, J., Lee, J., Chen, Y., Wei, C., Kao, J., Way, T., 2010. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMPactivated protein kinase (AMPK). J. Agric. Food Chem. 58, 9511-9517. https://doi. org/10.1021/jf1019533.
  • Macreadie, P.I., Baird, M.E., Trevathan-Tackett, S.M., Larkum, A.W., Ralph, P.J., 2014. Quantifying and modelling the carbon sequestration capacity of seagrass meadows-a critical assessment. Mar. Pollut. Bull. 83 (2), 430-439. https://doi.org/10.1016/j. marpolbul.2013.07.038.
  • Martins, B.T., da Silva, C.M., Pinto, M., Cidade, H., Kijjoa, A., 2019. Marine. Natural flavonoids: chemistry and biological activities. Nat. Prod. Res. 33, 3260-3272. https://doi.org/10.1080/14786419.2018.1470514.
  • McMillan, C., Zapata, O., Escobar, L., 1980. Sulphated phenolic compounds in seagrasses. Aquat. Bot. 8, 267-278. https://doi.org/10.1016/0304-3770(80)90055- 8.5.
  • Menge, B.A., Allison, G.W., Blanchette, C.A., Farrell, T.M., Olson, A.M., Turner, T.A., van Tamelen, P., 2005. Stasis or kinesis? Hidden dynamics of a rocky intertidal macrophyte mosaic revealed by a spatially explicit approach. J. Exp. Mar. Biol. Ecol. 314, 3-39. https://doi.org/10.1016/j.jembe.2004.09.015.
  • Mews, M., Zimmer, M., Jelinski, D.E., 2006. Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Mar. Ecol. Prog. Ser. 328, 155-160. https://doi.org/10.3354/meps328155.
  • Milittao, G.C., Albuquerque, M.R., Pessoa, O.D., Pessoa, C., Moraes, M.E., de Moraes, M. O., Costa-Lotufo, L.V., 2004. Cytotoxic activity of nepetin, a flavonoid from Eupatorium ballotaefolium HBK. Pharmazie 59, 965-966. PMID: 15638088.
  • Mugford, S.G., Yoshimoto, N., Reichelt, M., Wirtz, M., Hill, L., Mugford, S.T., Nakazato, Y., Noji, M., Takahashi, H., Kramell, R., Gigolashvili, T., Flugge, U.I., Wasternack, C., Gershenzon, J., Hell, R., Saito, K., Kopriva, S., 2009. Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 21, 910-927. https://doi.org/10.1105/ tpc.109.065581.
  • Nakasugi, T., Nakashima, M., Komai, K., 2000. Antimutagens in gaiyou (Artemisia argyi Levl. et Vant.). J. Agric. Food Chem. 48, 3256-3266. https://doi.org/10.1021/ jf9906679.
  • Noor, S., Mohammad, T., Rub, M.A., Raza, A., Azum, N., Yadav, D.K., Hassan, M.I., Asiri, A.M., 2022. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm. Res. (Seoul) 1-24. https://doi.org/10.1007/s12272-022-01378-2. Advance online publication.
  • Nordstrom, K.F., Jackson, N.L., Korotky, K.H., 2011. Aeolian sediment transport across beach wrack. J. Coast Res. 59, 211-217. https://doi.org/10.2307/29783118.
  • Papazian, S., Parrot, D., Buryˇskov´a, B., Weinberger, F., Tasdemir, D., 2019. Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Sci. Rep. 9, 3323. https://doi.org/10.1038/s41598-019-39212-3.
  • Paull, C.K., Caress, D.W., Lundsten, E., Gwiazda, R., Anderson, K., McGann, M., Conrad, J., Edwards, B., Sumner, E.J., 2013. Anatomy of the La Jolla submarine canyon system; offshore southern California. Mar. Geol. 335, 16-34. https://doi.org/ 10.1016/j.margeo.2012.10.003.
  • Pimenta, L.P., Kellner Filho, L.C., Liotti, R.G., Soares, M.A., Aguiar, D.P., et al., 2015. In vitro antischistosomal activity and cytotoxicity of 5-methoxylated flavones from Vochysia divergens, a flood-adapted species from Brazilian Pantanal. Adv. Pharmacoepidemiol. Drug Saf. 4 (3), 182. https://doi.org/10.4172/2167- 1052.100018.
  • Proksch, P., Wisdom, C., Rodriguez, E., 1981. Analysis of phenolic acids by highperformance liquid chromatography using a step-wise gradient. Z. Naturforsch. 36 c, 357-360.
  • R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project. org/.
  • Rafieian-Kopaei, M., Hamedi, A., Dehkordi, E.S., Pasdaran, A., Pasdaran, A., 2020. Phytochemical investigation on volatile compositions and methoxylated flavonoids of Agrostis gigantea. Roth. Iran. J. Pharm. Res. 19 (2), 360-370. https://doi.org/ 10.22037/ijpr.2019.15209.12935.
  • Ravn, H.W., Pedersen, M.F., Borum, J., Andary, C., Anthoni, U., Christophersen, C., Nielsen, P.H., 1994. Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera Marina L.). Ophelia 40, 51-61. https://doi.org/10.1080/00785326.1994.10429550.
  • Royston, P., 1995. Remark AS R94: a remark on Algorithm AS 181: the W test for normality. Appl. Stat. - J. R. Statist. Soc. C 44, 547-551. https://doi.org/10.2307/ 2986146.
  • Ruiz-Montoya, L., Sandoval-Gil, J.M., Belando-Torrentes, M.D., Vivanco-Bercovich, M., Cabello-Pasini, A., Rangel-Mendoza, L.K., Maldonado-Gutierrez, A., Ferrerira-Arrieta, A., Guzman-Calderon, J.M., 2021. Ecophysiological responses and selfprotective canopy effects of surfgrass (Phyllospadix torreyi) in the intertidal. Mar. Environ. Res. 172, 105501 https://doi.org/10.1016/j.marenvres.2021.10550.
  • Serviere-Zaragoza, E., Hurtado, M.A., Manzano-Sarabia, M., Mazariegos-Villarreal, A., Reza, M., Arjona, O., Palacios, E., 2015. Seasonal and interannual variation of fatty acids in macrophytes from the Pacific coast of Baja California Peninsula (Mexico). J. Appl. Phycol. 27 (3), 1297-1306. https://doi.org/10.1007/s10811-014-0415-2.
  • Serviere-Zaragoza, E., Hurtado-Oliva Miguel, A., Mazariegos-Villarreal, A., Arjona, O., Palacios, E., 2021. Seasonal and interannual variation of sterols in macrophytes from the Pacific coast of Baja California Peninsula (Mexico). Phycol. Res. 69 (1), 41-47. https://doi.org/10.1111/pre.12440.
  • Shoemaker, G., Wyllie-Echeverria, S., 2013. Occurrence of rhizomal endophytes in three temperate Northeast Pacific seagrasses. Aquat. Bot. 111, 71-73. https://doi.org/ 10.1016/j.aquabot.2013.05.010.
  • Sieg, R.D., Kubanek, J., 2013. Chemical ecology of marine angiosperms: opportunities at the interface of marine and terrestrial systems. J. Chem. Ecol. 39, 687-711. https:// doi.org/10.1007/s10886-013-0297-9.
  • Styshova, O.N., Popov, A.M., Artyukov, A.A., Klimovich, A.A., 2017. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp. Ther. Med. 13 (5), 1651-1659. https:// doi.org/10.3892/etm.2017.4217.
  • Subhashini, P., Dilipan, E., Thangaradjou, T., Papenbrock, J., 2013. Bioactive natural products from marine angiosperms: abundance and functions. Nat. Prod. Bioprospect. 3, 129-136. https://doi.org/10.1007/s13659-013-0043-6.
  • Takagi, M., Funahashi, S., Ohta, K., Nakabayashi, T., 1979. Flavonoids in the sea-grass Phyllospadix japonica. Agric. Biol. Chem. 43 (11), 2417-2418. https://doi.org/ 10.1080/00021369.1979.10863833.
  • Takagi, M., Funahashi, S., Ohta, K., Nakabayashi, T., 1980. Phyllospadine, a new flavonoidal alkaloid from the sea-grass Phyllosphadix iwatensis. Agric. Biol. Chem. 44 (12), 3019-3020. https://doi.org/10.1271/bbb1961.44.3019.
  • Talib, W.H., Abu Zarga, M.H., Mahasneh, A.M., 2012. Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules 17, 3291-3303. https://doi.org/10.3390/molecules17033291.
  • Teles, Y.C.F., Souza, M.S.R., de Souza, M.F.V., 2018. Sulphated flavonoids: biosynthesis, structures and biological activities. Molecules 23, 480-491. https://doi.org/ 10.3390/molecules23020480.
  • Terrados, J., Williams, S.L., 1997. Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Mar. Ecol. Prog. Ser. 149, 267-277. https://doi.org/10.3354/ meps149267.
  • Timbs, R., Durako, M.J., 2021. Landscape-scale variation in a sulfur-based sediment stress indicator for the seagrass Thalassia testudinum in Florida Bay, USA. Mar. Ecol. Prog. Ser. 670, 33-47. https://doi.org/10.3354/meps13752.
  • Tomas-Barber ´´an, F.A., Harborne, J.B., Self, R., 1987. Twelve 6-oxygenated flavone sulphates from Lippia nodiflora and L. canescens. Phytochemistry 26, 2281-2284. https://doi.org/10.1016/S0031-9422(00)84701-9.
  • Trevathan-Tacketta, S.M., Lane, A.L., Bishop, N., Ross, C., 2015. Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp. Aquat. Bot. 122, 1-8. https://doi.org/10.1016/j. aquabot.2014.12.005.
  • Turner, T., Lucas, J., 1985. Differences and similarities in the community roles of three rocky intertidal surfgrasses. J. Exp. Mar. Biol. Ecol. 89 (2-3), 175-189. https://doi. org/10.1016/0022-0981(85)90125-X.
  • Varin, L., Marsolais, F., Richard, M., Rouleau, M., 1997. Biochemistry and molecular biology of plant sulfotransferases. Faseb. J. 11, 517-525. https://doi.org/10.1096/ fasebj.11.7.9212075.
  • Waycott, M., Procaccini, G., Les, D.H., Reusch, T.B.H., 2006. Seagrass evolution, ecology and conservation: a genetic perspective. In: Larkum, A.W.D., Orth, R.J., Duarte, C.M. (Eds.), Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht, The Netherlands, pp. 25-50. https://doi.org/10.1007/1-4020-2983-7_2.
  • Woolard, G.R., Jones, J., Kenyon, N., 1978. Polysaccharides of the sea grass Phyllospadix torreyi. Carbohydr. Res. 63, 327-332. https://doi.org/10.1016/s0008-6215(00) 80964-7.
  • Wyllie-Echeverria, S., Ackerman, J.D., 2003. Seagrasses of the Pacific coast of North America. In: Green, E.P., Short, F.T. (Eds.), World Atlas of Seagrass. University of California Press, Berkeley, USA, ISBN 0-520-24047-2, pp. 199-206.
  • Zapata, O., McMillan, C., 1979. Phenolic acids in seagrasses. Aquat. Bot. 7, 307-317. https://doi.org/10.1016/0304-3770(79)90032-9.
  • Zhang, L., Tu, Z.-C., Wang, H.Z.-F., Fu, F., Wen, Q.-H., Fan, D., 2015. Metabolic profiling of antioxidants constituents in Artemisia selengensis leaves. Food Chem. 186, 123-132. https://doi.org/10.1016/j.foodchem.2015.03.068.
  • Zidorn, C., 2016. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): chemical diversity, bioactivity, and ecological function. Phytochemistry 124, 5-28. https://doi.org/10.1016/j.phytochem.2016.02.004.