Published May 31, 2022
| Version v1
Journal article
Restricted
Phenylpropanoids from Brachybotrys paridiformis Maxim. ex Oliv. and their anti-HBV activities
Authors/Creators
Description
Wu, Si-Tong, Wang, Yi-Xiao, Yu, Bai-Hong, Ma, Chun-Liu, Qiu, He-Qin, Wang, Guang-Shu (2022): Phenylpropanoids from Brachybotrys paridiformis Maxim. ex Oliv. and their anti-HBV activities. Phytochemistry (113114) 197: 1-8, DOI: 10.1016/j.phytochem.2022.113114, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113114
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:1617042F0E4D3B09AD63297DFFE7FFA5
References
- Dapkevicius, A., van Beek, T.A., Lelyveld, G.P., van Veldhuizen, A., de Groot, A., Linssen, J.P.H., Venskutonis, R., 2002. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves. J. Nat. Prod. 65, 892-896. https://doi.org/ 10.1021/np010636j.
- El-Rokh, A.R., Negm, A., El-Shamy, M., El-Gindy, M., Abdel-Mogib, M., 2018. Sucrose diester of aryldihydronaphthalene-type lignans from Echium angustifolium Mill. and their antitumor activity. Phytochemistry 149, 155-160. https://doi.org/10.1016/j. phytochem.2018.02.014.
- Gerasi, M., Frakolaki, E., Papadakis, G., Chalari, A., Lougiakis, N., Marakos, P., Pouli, N., Vassilaki, N., 2020. Design, synthesis and anti-HBV activity evaluation of new substituted imidazo[4,5-b]pyridines. Bioorg. Chem. 98, 103580 https://doi.org/ 10.1016/j.bioorg.2020.103580.
- Iqbal, K., Nawaz, S.A., Malik, A., Riaz, N., Mukhtar, N., Mohammad, P., Choudhary, M.I., 2005. Isolation and lipoxygenase-inhibition studies of phenolic constituents from Ehretia obtusifolia. Chem. Biodivers. 2, 104-111. https://doi.org/10.1002/ cbdv.200490161.
- Kusirisin, W., 2011. Inhibitory effects of caffeic acid ester analogues on free radicals and human liver microsome CYP1A2 activities. Med. Chem. 7, 99-105. https://doi. org/10.2174/157340611794859316.
- Kim, J.Y., Cho, J.Y., Ma, Y.K., Park, K.Y., Lee, S.H., Ham, K.S., Lee, H.J., Park, K.H., Moon, J.H., 2011. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 125, 55-62. https://doi.org/10.1016/j.foodchem.2010.08.035.
- Kumar, P., Dev, K., Sharma, K., Sahai, M., Maurya, R., 2019. New lignan glycosides from Cissus quadrangularis stems. Nat. Prod. Res. 33, 233-238. https://doi.org/10.1016/j. foodchem.2010.08.035.
- Liu, S., Wei, W.X., Shi, K.C., Cao, X., Zhou, M., Liu, Z.P., 2014. In vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. J. Ethnopharmacol. 155, 1061-1067. https://doi.org/10.1016/j.jep.2014.05.064.
- Ma, B., Guo, H.F., Lou, H.X., 2007. A new lignan and two eudesmanes from Lepidozia vitrea. Helv. Chim. Acta 90, 58-62. https://doi.org/10.1002/hlca.200790021.
- Otsuka, H., Kuwabara, H., Hoshiyama, H., 2008. Identification of sucrose diesters of aryldihydronaphthalene-type lignans from Trigonotis peduncularis and the nature of their fluorescence. J. Nat. Prod. 71, 1178-1181. https://doi.org/10.1021/ np800071r.
- She, G.M., Ba, Y.Y., Liu, Y., Lv, H., Wang, W., Shi, R.B., 2011. Absorbable phenylpropenoyl sucroses from Polygala tenuifolia. Molecules 16, 5507-5513. https://doi.org/10.3390/molecules16075507.
- Sun, M.D., 2018. Study on the Chemical Composition and Biological Activity of Brachybotrys paridiformis Maxim⋅ex⋅Oliv. Master Thesis. Changchun University of traditional Chinese Medicine.
- Suo, M.R., Yang, J.S., Liu, Q.H., 2006. Lignan oligosaccharide esters from Eritrichium rupestre. J. Nat. Prod. 69, 682-684. https://doi.org/10.1021/np050442u.
- Tang, F., Huang, G.H., Lin, L.P., Yin, H., Shao, L.L., Xu, R.A., Cui, X.L., 2021. Anti-HBV activities of polysaccharides from Thais clavigera (Kuster) by in vitro and in vivo study. Mar. Drugs 19, 195. https://doi.org/10.3390/md19040195.
- Teponno, R.B., Kusari, S., Spiteller, M., 2016. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 33, 44-1092. https://doi.org/10.1039/c6np00021e.
- Wang, C.Z., Jia, Z.J., 1997. Lignan, phenylpropanoid and iridoid glycosides from Pedicularis torta. Phytochemistry 45, 159-166. https://doi.org/10.1016/s0031-9422 (96)00770-4.
- Wang, Y., Gao, W.Y., Zhang, T.J., Guo, Y.Q., 2007. A novel phenylpropanoid glycosides and a new derivation of phenolic glycoside from Paris Polyphylla var. yunnanensis. Chin. Chem. Lett. 18, 548-550. https://doi.org/10.1016/j.cclet.2007.03.011.
- Wei, Y., Xie, Q.Q., Fisher, D., Sutherland, I.A., 2011. Separation of patuletin-3-Oglucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveriabidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography. J. Chromatogr. A 1218, 6206-6211. https://doi.org/10.1016/j. chroma.2011.01.058.
- Wu, J.R., Li, X.D., Guo, X.C., Cheng, Z.B., Meng, J.J., Cheng, W., Lin, W.H., 2020. Briarane-type diterpenoids from a gorgonian coral Ellisella sp. with anti-HBV activities. Bioorg. Chem. 105, 104423 https://doi.org/10.1016/j. bioorg.2020.104423.
- Yuan, C.S., Zhang, Z.X., Gao, X., Jia, Z.R., 2005. A new neolignan glycoside from Pedicularis armata. Chin. Chem. Lett. 16, 781-782.
- Zhou, L., Yao, G.D., Song, X.Y., Wang, J., Lin, B., Wang, X.B., Huang, X.X., Song, S.J., 2018. Neuroprotective effects of 1,2-diarylpropane type phenylpropanoid enantiomers from red raspberry against H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells. J. Agric. Food Chem. 66, 331-338. https://doi.org/ 10.1021/acs.jafc.7b04430.
- Zhou, B.S., 2019. Study on Chemical Constituent and Biological Activity of Brachybotrys paridiformis Maxim. Ex Oliv. Master Thesis. Jilin University.
- Zhou, Y., Jin, M., Jin, C.S., Ye, C., Wang, J.M., Sun, J.F., Wei, C.X., Zhou, W., Li, G., 2020. A new aryldihydronaphthalene-type lignan and other metabolites with potential anti- inflammatory activities from Corispermum mongolicum Iljin. Nat. Prod. Res. 34, 225-232. https://doi.org/10.1080/14786419.2018.1527835.