Published March 31, 2022 | Version v1
Journal article Restricted

Profiling alkaloids in Aconitum pendulum N. Busch collected from different elevations of Qinghai province using widely targeted metabolomics

  • 1. * & Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, PR China & Bijie Medical College, Bijie, 551700, PR China

Description

Wang, Jun-Jie, Lou, Hua-Yong, Liu, Ying, Han, Hong-Ping, Ma, Feng-Wei, Pan, Wei-Dong, Chen, Zhi (2022): Profiling alkaloids in Aconitum pendulum N. Busch collected from different elevations of Qinghai province using widely targeted metabolomics. Phytochemistry (113047) 195: 1-10, DOI: 10.1016/j.phytochem.2021.113047, URL: http://dx.doi.org/10.1016/j.phytochem.2021.113047

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:BC3BFFCAFFA5237AFFD0EF65FFF8FFE6
URL
http://publication.plazi.org/id/BC3BFFCAFFA5237AFFD0EF65FFF8FFE6

References

  • Ablajan, N., Zhao, B., Zhao, J.Y., Wang, B.L., Sagdullaev, S.S., Aisa, H.A., 2021. Diterpenoid alkaloids from Aconitum barbatum var. puberulum Ledeb. Phytochemistry 181, 112567. https://doi.org/10.1016/j.phytochem.2020.112567.
  • Ali, S., Rech, K.S., Badshah, G., Soares, F.L., Barison, A., 2021. 1 H HR-MAS NMR-based metabolomic fingerprinting to distinguish morphologicalsimilarities and metabolic profiles of Maytenus ilicifolia, a Brazilian medicinal plant. J. Nat. Prod. 84, 1707-1714. https://doi.org/10.1021/acs.jnatprod.0c01094.
  • Bouaicha, N., Amade, P., Puel, D., Roussakis, C., 1994. Zarzissine, a new cytotoxic guanidine alkaloid from the Mediterranean sponge Anchinoe paupertas. J. Nat. Prod. 57, 1455-1457. https://doi.org/10.1021/np50112a019.
  • Chen, W., Gong, L., Guo, Z.L., Wang, W.S., Zhang, H.Y., Liu, X.Q., Yu, S.B., Xiong, L.Z., Luo, J., 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant 6, 1769-1780. https://doi.org/10.1093/mp/sst080.
  • Chen, Z., de Boves Harrington, P., Baugh, S.F., 2018. High-throughput chemotyping of cannabis and hemp extracts using an ultraviolet microplate reader and multivariate classifiers. J. Anal. Test. 2, 210-222. https://doi.org/10.1007/s41664-018-0075-3.
  • Chen, Z., Harrington, P.d.B., 2019. Pipeline for High-throughput modeling of marijuana and hemp extracts. Anal. Chem. 91, 14489-14497. https://doi.org/10.1021/acs. analchem.9b03290.
  • Chervin, J., Talou, T., Audonnet, M., Dumas, B., Camborde, L., Esquerr´e-Tugay´e, M.-T., Roux, C., Cabanac, G., Marti, G., 2019. Deciphering the phylogeny of violets based on multiplexed genetic and metabolomic approaches. Phytochemistry 163, 99-110. https://doi.org/10.1016/j.phytochem.2019.04.001.
  • da Silva Taveira, J.H., Bor´em, F.M., Figueiredo, L.P., Reis, N., Franca, A.S., Harding, S.A., Tsai, C.J., 2014. Potential markers of coffee genotypes grown in different Brazilian regions: a metabolomics approach. Food Res. Int. 61, 75-82. https://doi.org/ 10.1016/j.foodres.2014.02.048.
  • Gan, L.S., Yao, W., Mo, J.X., Zhou, C.X., 2009. Alkaloids from lindera aggregata. Nat. Prod. Commun. 4, 43-46. https://doi.org/10.1177/1934578X0900400111.
  • Guo, S.C., Guo, R., Zhan, H.Q., 2020. Quantitative analysis of fermented aerial part of Bupleurum chinense and prediction of their antimicrobial activity. China J. Chin. Mater. Med. 45, 4238-4245. https://doi.org/10.19540/j.cnki. cjcmm.20200622.305.
  • He, D.M., Wang, H., Cheng, J.L., Yan, Z.Y., Huang, L.Q., 2020. Microecology and geoherbalism of traditional Chinese medicine. China J. Chin. Mater. Med. 45, 290-302. https://doi.org/10.19540/j.cnki.cjcmm.20191104.106.
  • Hu, Z.X., An, Q., Tang, H.Y., Chen, Z.H., Aisa, H.A., Zhang, Y., Hao, X.J., 2019. Acoapetaludines A-K, C20 and C19-diterpenoid alkaloids from the whole plants of Aconitum apetalum (Huth) B.Fedtsch. Phytochemistry 167, 112111. https://doi.org/ 10.1016/j.phytochem.2019.112111.
  • Huang, Q., Sun, M.L., Li, T.F., Wang, Y.X., 2017. Research progress on mechanisms underlying aconitines analgesia. Acta. Neuro. Pharm. 7, 21-32. https://doi.org/ 10.3969/j.issn.2095-1396.2017.03.004.
  • Jiang, C.K., Ma, J.Q., Apostolides, Z., Chen, L., 2019. Metabolomics for a millenniumsold crop: tea plant (Camellia sinensis). J. Agric. Food Chem. 67, 6445-6457. https:// doi.org/10.1021/acs.jafc.9b01356.
  • Jiang, G.Y., Qin, L.L., Gao, F., Huang, S., Zhou, X.L., 2020. Fifteen new diterpenoid alkaloids from the roots of Aconitum kirinense Nakai. Fitoterapia 141, 104477. https://doi.org/10.1016/j.fitote.2020.104477.
  • Kang, L., Chang, L.J., 2017-2019. Qinghai Statistical Yearbook.
  • Li, S., He, Q., Peng, Q., Fang, X., Zhu, T., Qiao, T., Han, S., 2019. Metabolomics responses of Bambusa pervariabilis× Dendrocalamopsis grandis varieties to Biotic (pathogenic fungus) stress. Phytochemistry 167, 112087. https://doi.org/10.1016/j. phytochem.2019.112087.
  • Li, S.P., Chen, Y., Duan, Y., Zhao, Y.H., Zhang, D., Zang, L.Y., Ya, H.Y., 2021a. Widely targeted metabolomics analysis of different parts of Salsola collina Pall. Molecules 26, 1126. https://doi.org/10.3390/molecules26041126.
  • Li, Y., Zeng, J., Tian, Y.H., Hou, Y., Da, H., Fang, J., Gao, K., 2021b. Isolation, identification, and activity evaluation of diterpenoid alkaloids from Aconitum sinomontanum. Phytochemistry 190, 112880. https://doi.org/10.1016/j. phytochem.2021.112880.
  • Li, Y.Z., Qin, L.L., Gao, F., Shan, L.H., Zhou, X.L., 2020. Kusnezosines A-C, three C19- diterpenoid alkaloids with a new skeleton from Aconitum kusnezoffii Reichb. var. gibbiferum. Fitoterapia 144, 104609. https://doi.org/10.1016/j.fitote.2020.104609.
  • Liu, L.F., 2019. Study on Chemical Constituents and Biological Activities of Juniperus Przewalskii at Different Altitudes Northwest A & F University.
  • Liu, T., Li, W.Y., Liu, X.W., Qi, C.M., Yuan, Z.H., 2016. Chemical constituents from the roots of Lindera glauca and their antitumor activity on four different cancer cell lines. Chin. Med. Mat. 39, 1789-1792. https://doi.org/10.13863/j.issn1001- 4454.2016.08.025.
  • Liu, Y., Chen, T., Li, L., 2014. Isolation and preparation of an imidazole alkaloid from radix of aconitum pendulm Busch by semi-preparative high speed counter-current chromatography. Chin. J. Chromatogr. 32, 543-546. https://doi.org/10.3724/sp. j.1123.2013.12007.
  • Nie, H., Chen, H., Li, G., Su, K., Song, M., Duan, Z., Li, X., Cao, X., Huang, J., Huang, S., 2021. Comparison of flavonoids and phenylpropanoids compounds in Chinese water chestnut processed with different methods. Food Chem. 335, 127662. https://doi. org/10.1016/j.foodchem.2020.127662.
  • Pinu, F.R., 2015. Metabolomics-the new frontier in food safety and quality research. Food Res. Int. 72, 80-81. https://doi.org/10.1016/j.foodres.2015.03.028.
  • Plazas, E., Casoti, R., Avila Murillo, M., Batista Da Costa, F., Cuca, L.E., 2019. Metabolomic profiling of Zanthoxylum species: identification of anti-cholinesterase alkaloids candidates. Phytochemistry 168, 112128. https://doi.org/10.1016/j. phytochem.2019.112128.
  • Rashid, A., Ali, V., Khajuria, M., Faiz, S., Gairola, S., Vyas, D., 2021. GC-MS based metabolomic approach to understand nutraceutical potential of Cannabis seeds from two different environments. Food Chem. 339, 128076. https://doi.org/10.1016/j. foodchem.2020.128076.
  • Ren, G.H., Deng, B., Shang, Z.H., Hou, Y., Long, R.J., 2013. Plant communities and soil variations along a successional gradient in an alpine wetland on the Qinghai-Tibetan Plateau. Ecol. Eng. 61, 110-116. https://doi.org/10.1016/j.ecoleng.2013.09.017.
  • Sampaio, B.L., Edrada-Ebel, R., Da Costa, F.B., 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci. Rep. 6, 1-11. https://doi.org/10.1038/srep29265.
  • Sheng, Q., Zhao, J.X., Chen, S.L., 2018. Research on influence of environment factors to yield andquality traits of Perilla frutescen. China J. Chin. Mater. Med. 43, 4033-4043. https://doi.org/10.19540/j.cnki.cjcmm.20180820.007.
  • Shi, W.P., Xu, H.S., Tian, W.Y., Yang, C., Sun, B.H., Zheng, J.X., 2017. Study on alkaloids and esters of Plumula nelumbinis. Chin. Med. Mat. 40, 2347-2350. https://doi.org/ 10.13863/j.issn1001-4454.2017.10.024.
  • Si, Y., Ding, X., Adelakuna, T.A., Zhang, Y., Hao, X.J., 2020. Acotarines A-G, new diterpenoid alkaloids from Aconitum taronense induce lysosomal biogenesis. Fitoterapia 147, 104738. https://doi.org/10.1016/j.fitote.2020.104738.
  • Suonan, D.D., Chen, W.D., Lin, P.C., 2019. Habitat and factors of endangerment of wild and endangered medicinal herb Dactylorhiza hatagirea in Qinghai-Tibet Plateau. Guihaia 39, 1166-1179. https://doi.org/10.11931/guihaia.gxzw201903013.
  • Tan, C.J., Liu, L.N., Tang, H.M., Shi, B.J., Ran, J.Q., Zhao, B.Y., 2015. Alkaloids from Oxytropis ochrocephala bunge. Nat. Prod. Res. Dev. 27, 1365-1367+ 1373. https:// doi.org/10.16333/j.1001-6880.2015.08.009.
  • Ueno, V.A., Sawaya, A., 2019. Influence of environmental factors on the volatile composition of two Brazilian medicinal plants: Mikania laevigata and Mikania glomerata. Metabolomics 15, 11. https://doi.org/10.1007/s11306-019-1546-x.
  • Wang, B.N., Huang, Q.Y., Venkitasamy, C., Chai, H.K., Gao, H., Cheng, N., Cao, W., Lv, X. G., Pan, Z.L., 2016. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. Food Sci. Technol. (N. Y.) 66, 56-62. https://doi.org/10.1016/j.lwt.2015.10.005.
  • Wang, J., Cheng, P., Du, Q., Rong, T.W., 2019a. The role of reactive oxygen in regulating early nodulation of legumes. Chin. J. Eco-Agric. 27, 405-412. https://doi.org/ 10.13930/j.cnki.cjea.180839.
  • Wang, J.J., Lou, H.Y., Li, J.Y., Liu, Y., Han, H.P., Yang, Z.C., Pan, W.D., Chen, Z., 2021. C19-diterpenoid alkaloids from the rhizomes of Aconitum pendulum. Fitoterapia 151, 104887. https://doi.org/10.1016/j.fitote.2021.104887.
  • Wang, J.J., Peng, Z.B., Sun, H., Nie, Z.L., Meng, Y., 2017. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet Plateau and hengduan mountains. Biodivers. Sci. 25, 218-225. https://doi.org/10.17520/biods.2016281.
  • Wang, Q., Bao, Y., Nan, L., 2019b. Dynamic and thermodynamic effects on climate changes over the Qinghai-Tibetan Plateau in response to global warming. Plateau Meteorol. 38, 29-41. https://doi.org/10.7522/j.issn.1000-0534.2018.00066.
  • Wang, Y.J., Zhang, J., Zeng, C.J., Yao, Z., Zhang, Y., 2011. Three new C19-diterpenoid alkaloids from Aconitum pendulum. Phytochem. Lett. 4, 166-169. https://doi.org/ 10.1016/j.phytol.2011.02.008.
  • Worley, B., Powers, R., 2013. Multivariate analysis in metabolomics. Curr. Metabolomics 1, 92-107. https://doi.org/10.2174/2213235X11301010092.
  • Xiao, P.G., Wang, F.P., Gao, F., Yan, L.P., Chen, D.L., Chen, Y., 2006. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China. Acta Phytotaxon. Sin. 44, 1-16. https://doi.org/10.1360/aps050046.
  • Xiong, J., Tan, N.H., Ji, C.J., Lu, Y., Gong, N.B., 2008. Vilmoraconitine, a novel skeleton C19-diterpenoid alkaloid from Aconitum vilmorinianum. Tetrahedron Lett. 49, 4851-4853. https://doi.org/10.1016/j.tetlet.2008.06.008.
  • Xue, C.H., Wu, Q., Wang, M.J., Liu, J.H., Zang, L.F., Zang, J.W., La, Z.H., Wu, H., Chai, S. T., 2021. Effect of black wolfberry anthocyanins on LPS-induced inflammation of Raw 264.7 cells. Chin. J. Vet. Sci. 41, 985-991. https://doi.org/10.16303/j. cnki.1005-4545.2021.05.25.
  • Yan, L.S., Wang, L., Cheng, B., Ding, Y., Kong, J., Wang, Q.G., Fu, X.Q., Zhang, S.F., Luo, G., Zhang, Y., 2021. Total flavonoids from Saussurea involucrata attenuate inflammation in lipopolysaccharide-stimulated RAW264.7 macrophages via modulating p65, c-Jun, and IRF3 signaling pathways. Asian Pac. Trop. Biomed. 11, 273-284. https://doi.org/10.4103/2221-1691.314053.
  • Yang, C., Yang, H., Xu, Q., Wang, Y., Sang, Z., Yuan, H., 2020. Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon). Phytochemistry 174, 112346. https:// doi.org/10.1016/j.phytochem.2020.112346.
  • Yang, Z.D., Duan, D.Z., 2012. A new alkaloid from Fritillaria ussuriensis Maxim. Fitoterapia 83, 137-141. https://doi.org/10.1016/j.fitote.2011.10.006.
  • Yin, T.P., Hu, X.F., Mei, R.F., Shu, Y., Gan, D., Cai, L., Ding, Z.T., 2018. Four new diterpenoid alkaloids with anti-inflammatory activities from Aconitum taronense Fletcher et Lauener. Phytochem. Lett. 25, 152-155. https://doi.org/10.1016/j. phytol.2018.04.001.
  • Zhang, J., Qiu, X., Tan, Q., Xiao, Q., Mei, S., 2020. A comparative metabolomics study of flavonoids in radish with different skin and flesh colors (Raphanus sativus L.). J. Agric. Food Chem. 68, 14463-14470. https://doi.org/10.1021/acs.jafc.0c05031.
  • Zonyane, S., Chen, L.S., Xu, M.J., Gong, Z.N., Xu, S.W., Makunga, N.P., 2019. Geographic-based metabolomic variation and toxicity analysis of Sutherlandia frutescens LR Br.-An emerging medicinal crop in South Africa. Ind. Crop. Prod. 133, 414-423. https://doi.org/10.1016/j.indcrop.2019.03.010.
  • Zou, C.Y., Li, J., Lei, H.M., Fu, H.Z., Lin, W.H., 2000. A new alkaloid from root of Stemona japonica Miq. J. Chin. Pharmaceut. Sci. 9, 113-115. http://www.jcps.ac.cn/EN/ Y2000/V9/I3/113.