Published October 31, 2022 | Version v1
Journal article Restricted

Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications

  • 1. * & * & State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China

Description

Wang, Li-Xia, Wang, Hong-Liang, Huang, Jiao, Chu, Tian-Zhe, Peng, Cheng, Zhang, Hai, Chen, Hu-Lan, Xiong, Yong-Ai, Tan, Yu-Zhu (2022): Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. Phytochemistry (113326) 202: 1-33, DOI: 10.1016/j.phytochem.2022.113326, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113326

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:414B386F67510728FFFBFF80FF88FF83

References

  • Anantachoke, N., Lovacharaporn, D., Reutrakul, V., Michel, S., Gaslonde, T., Piyachaturawat, P., Suksen, K., Prabpai, S., Nuntasaen, N., 2020. Cytotoxic compounds from the leaves and stems of the endemic Thai plant Mitrephora sirikitiae. Pharm. Biol. 58 (1), 490-497. https://doi.org/10.1080/13880209.2020.1765813.
  • Arango-De la Pava, L.D., Zamilpa, A., Trejo-Espino, J.L., Dominguez-Mendoza, B.E., Jim´enez-Ferrer, E., P´erez-Martinez, L., Trejo-Tapia, G., 2021. Synergism and subadditivity of verbascoside-lignans and iridoids binary mixtures isolated from Castilleja tenuiflora Benth. on NF-κB/AP-1 inhibition activity. Molecules 26 (3), 547. https://doi.org/10.3390/molecules26030547.
  • Bai, M., Wu, S.Y., Zhang, W.F., Song, X.P., Han, C.R., Zheng, C.J., Chen, G.Y., 2019. One new lignan derivative from the fruiting bodies of Ganoderma lipsiense. Nat. Prod. Res. 33 (19), 2784-2788. https://doi.org/10.1080/14786419.2018.1501691.
  • Barre, D.E., Mizier-Barre, K.A., 2019. Lignans' potential in pre and post-onset type 2 diabetes management. Curr. Diabetes Rev. 16 (1), 2-11. https://doi.org/10.2174/ 1573399814666180914094520.
  • Bi, H.Y., Xu, C.L., Fu, H.Z., Zhou, Z.Q., Zhong, R.J., Dai, M., Wang, D., 2020. Two new norneolignans from Callicarpa kwangtungensis. Nat. Prod. Res. 34 (2), 197-203. https://doi.org/10.1080/14786419.2018.1525374.
  • Brito, J.R., Da Costa-Silva, T.A., Tempone, A.G., Ferreira, E.A., Lago, J.H.G., 2019. Dibenzylbutane neolignans from Saururus cernuus L. (Saururaceae) displayed anti- Trypanosoma cruzi activity via alterations in the mitochondrial membrane potential. Fitoterapia 137, 104251. https://doi.org/10.1016/j.fitote.2019.104251.
  • Cai, L., Shao, S.Y., Han, S.W., Li, S., 2020. Sesquiterpenoids, phenolic and lignan glycosides from the roots and rhizomes of Clematis hexapetala Pall. and their bioactivities. Bioorg. Chem. 104, 104312 https://doi.org/10.1016/j. bioorg.2020.104312.
  • Cao, J., Shao, S.Y., Zhang, X., Yuan, X., Feng, Z.M., Jiang, J.S., Yang, Y.N., Zhang, P.C., 2020a. Two new lignans from the fruits of Forsythia suspensa. J. Asian Nat. Prod. Res. 22 (5), 418-424. https://doi.org/10.1080/10286020.2019.1666828.
  • Cao, Y.G., Li, H.W., Zhang, Y.L., Wang, J.C., Ren, Y.J., Liu, Y.L., Wang, M.N., He, C., Chen, X., Zheng, X.K., Feng, W., 2020b. Alkaloids and lignans with acetylcholinesterase inhibitory activity from the flower buds of Magnolia biondii Pamp. New J. Chem. 44 (25), 10309-10316. https://doi.org/10.1039/d0nj01537g.
  • Chen, C.Y., Chen, C.T., Liu, S.L., Kao, C.L., Li, W.J., Yeh, H.C., Li, H.T., Chang, H.W., 2020a. A new dimeric lignan from Machilus philippinensis. Chem. Nat. Compd. 56 (4), 611-613. https://doi.org/10.1007/s10600-020-03105-z.
  • Chen, H., Zhu, Y., Kong, J.B., Sun, Y.J., Gao, L., Bian, H., Feng, W.S., 2020b. One new benzofuran lignan from Polygonatum sibiricum. Chin. Tradit. Herb. Drugs 51 (1), 21-25.
  • Chen, X., Xu, P.S., Zou, Z.X., Liu, Y., Zhou, W.H., Ren, Q., Li, D., Li, X.M., Xu, K.P., Tan, G.S., 2019. Sinensiols B-G, six novel neolignans from Selaginella sinensis. Fitoterapia 134, 256-263. https://doi.org/10.1016/j.fitote.2019.02.034.
  • Chen, Y.X., You, Y.X., Rao, L., Liu, Y., He, Q., Xu, Y.K., Lin, B., Zhang, C.R., 2021. Neolignans and sesquiterpenoid from Piper yunnanense. Chem. Biodivers. 18 (9), e2100458 https://doi.org/10.1002/cbdv.202100458.
  • Cheng, F., Zou, Z.X., Xu, P.S., Zhang, S.H., Zhang, Y., Yao, C.P., Xu, K.P., Tan, G.S., 2020a. Pictalignans D-F, three new neolignan derivatives from Selaginella picta. Nat. Prod. Res. 34 (9), 1264-1269. https://doi.org/10.1080/14786419.2018.1560284.
  • Cheng, L., Liu, G.Y., Pan, Y.C., Shang, Z.M., Zhang, M.S., Xiao, S.J., 2019a. One new lignan from hawk tea. Acta Pharmacol. Sin. 54 (4), 692-694. https://doi.org/ 10.16438/j.0513-4870.2018-1084.
  • Cheng, Y., Yin, Z., Jiang, F., Xu, J., Chen, H., Gu, Q., 2020b. Two new lignans from the aerial parts of Saururus chinensis with cytotoxicity toward nasopharyngeal carcinoma. Fitoterapia 141, 104344. https://doi.org/10.1016/j.fitote.2019.104344.
  • Cheng, Z.Y., Lou, L.L., Yang, P.Y., Song, X.Y., Wang, X.B., Huang, X.X., Song, S.J., 2019b. Seven new neuroprotective sesquineolignans isolated from the seeds of Crataegus pinnatifida. Fitoterapia 133, 225-230. https://doi.org/10.1016/j.fitote.2019.01.008.
  • Chopra, B., Dhingra, A.K., 2021. Natural products: a lead for drug discovery and development. Phytother Res. 35 (9), 4660-4702. https://doi.org/10.1002/ptr.7099.
  • Chumkaew, P., Srisawat, T., 2019. New neolignans from the seeds of Myristica fragrans and their cytotoxic activities. J. Nat. Med. 73 (1), 273-277. https://doi.org/ 10.1007/s11418-018-1246-2.
  • Cui, Q.H., Du, R.K., Liu, M.M., Rong, L.J., 2020. Lignans and their derivatives from plants as antivirals. Molecules 25 (1), 183. https://doi.org/10.3390/molecules25010183.
  • Diao, H.Z., Chen, W.H., Cao, J., Shao, T.M., Song, X.P., Han, C.R., 2019. Furofuran lignans and alkaloids from Clinacanthus nutans. Nat. Prod. Res. 33 (9), 1317-1321. https://doi.org/10.1080/14786419.2018.1475375.
  • Elshamy, A.I., Mohamed, T.A., Ibrahim, M.A.A., Atia, M.A.M., Yoneyama, T., Umeyama, A., Hegazy, M.E.F., 2021. Two novel oxetane containing lignans and a new megastigmane from Paronychia arabica and in silico analysis of them as prospective SARS-CoV-2 inhibitors. RSC Adv. 11 (33), 20151-20163. https://doi. org/10.1039/d1ra02486h.
  • Fan, S.R., Guo, J.J., Wang, Y.T., Yang, B.J., Chen, D.Z., Hao, X.J., 2020. Two new bioactive lignans from leaves and twigs of Cleistanthus concinnus Croizat. Nat. Prod. Res. 34 (23), 3328-3334. https://doi.org/10.1080/14786419.2019.1569663.
  • Feng, Z.C., Wang, S., Li, J., Wang, J.S., 2020. New neolignan from Acanthopanax senticosus and the cytotoxic effects on human cancer cell lines. Nat. Prod. Commun. 15 (7), 1-4. https://doi.org/10.1177/1934578x20941299.
  • Frezza, C., Venditti, A., Toniolo, C., De Vita, D., Franceschin, M., Ventrone, A., Tomassini, L., Foddai, S., Guiso, M., Nicoletti, M., Serafini, M., Bianco, A., 2020. Norlignans: occurrence in plants and biological activities-a review. Molecules 25 (1), 197. https://doi.org/10.3390/molecules25010197.
  • Gao, X.X., Gao, Y.N., Wang, D.D., Hu, G.S., Yan, T., Jia, J.M., Wang, A.H., 2021. Six novel lignanoids with complex structures from Sigesbeckia glabrescens Makino with their cytotoxic activities. Fitoterapia 148, 104799. https://doi.org/10.1016/j. fitote.2020.104799.
  • Guillermo, N.M., Ana, L.V., Abraham, G., Veronica, M.R.G., Elvira, G.G., Gabriel, E., Cuevas, G.B., Ruben, A.T., Rosa, E.M.P., Jairo, R.V.T., Pascal, M., Maria del Rayo, C. C., 2021. New cyclolignans of Larrea tridentata and their antibacterial and cytotoxic activities. Phytochem. Lett. 43, 212-218. https://doi.org/10.1016/j. phytol.2021.04.013.
  • Guo, R., Zhou, L., Zhao, P., Wang, X.B., Huang, X.X., Song, S.J., 2019. Two new sesquineolignans from the seeds of Crataegus pinnatifida and their β -amyloid aggregation inhibitory activitiy. Nat. Prod. Res. 33 (17), 2446-2452. https://doi. org/10.1080/14786419.2018.1448814.
  • Han, J.X., Chen, X.Y., Liu, W., Cui, H., Yuan, T., 2020. Triterpenoid saponin and lignan glycosides from the traditional medicine Elaeagnus angustifolia flowers and their cytotoxic activities. Molecules 25 (3), 462. https://doi.org/10.3390/ molecules25030462.
  • He, P., Cheng, S., Hu, F., Ma, Z., Xia, Y., 2021. Up-regulation of DGAT1 in cancer tissues and tumor-infiltrating macrophages influenced survival of patients with gastric cancer. BMC Cancer 21 (1), 252. https://doi.org/10.1186/s12885-021-07976-5.
  • Hu, F., Hu, Y.J., Su, B.J., Wang, Y.Q., Liao, H.B., Liang, D., 2021. Enantiomeric lignans with antineuroinflammatory activities from Mappianthus iodoides. Phytochem. Lett. 42, 18-23. https://doi.org/10.1016/j.phytol.2021.01.006.
  • Hu, Q.Y., Ma, Z.H., Yang, Q.F., Lou, S.Z., Du, G., Yang, H.Y., Zhou, M., Dong, M., 2019. One new lignan from Amauroderma rude. Chin. Tradit. Herb. Drugs 50 (24), 5913-5916.
  • Hu, Y.L., Tian, X.M., Wang, C.C., Olga, Q., Yan, D., Tang, P.F., Zhang, L.N., Kong, L.Y., Luo, J., 2020. New triterpenoids, steroids and lignan from the stem barks of Entandrophragma utile. Fitoterapia 143, 104546. https://doi.org/10.1016/j. fitote.2020.104546.
  • Huang, Q., Tan, J.B., Zeng, X.C., Wang, Y.Q., Zou, Z.X., Ouyang, D.S., 2019a. Lignans and phenolic constituents from Eucommia ulmoides Oliver. Nat. Prod. Res. 35 (20), 3376-3383. https://doi.org/10.1080/14786419.2019.1700250.
  • Huang, S.Q., Liu, Y.Y., Li, Y.Z., Fan, H., Huang, W.L., Deng, C., Song, X.M., Zhang, D.D., Wang, W., 2021. Dibenzocyclooctadiene lignans from the root bark of Schisandra sphenanthera. Phytochem. Lett. 45, 137-141. https://doi.org/10.1016/j. phytol.2021.08.015.
  • Huang, X.Y., Shao, Z.X., An, L.J., Xue, J.J., Li, D.H., Li, Z.L., Hua, H.M., 2019b. New lignanamides and alkaloids from Chelidonium majus and their anti-inflammation activity. Fitoterapia 139, 104359. https://doi.org/10.1016/j.fitote.2019.104359.
  • Huang, Y.Y., Qiu, X., Xie, Y.G., Wu, G.J., Zhu, S.L., Zhang, W.D., Zhang, Y., Chen, D.J., Jin, H.Z., 2019c. New acetylenic compounds and lignans from Dolomiaea berardioidea (Franch.) Shih. Phytochem. Lett. 31, 125-130. https://doi.org/ 10.1016/j.phytol.2019.03.012.
  • Huh, J., Song, J.H., Kim, S.R., Cho, H.M., Ko, H.J., Yang, H., Sung, S.H., 2019. Lignan dimers from Forsythia viridissima roots and their antiviral effects. J. Nat. Prod. 82 (2), 232-238. https://doi.org/10.1021/acs.jnatprod.8b00590.
  • Jia, Y.Z., Yang, Y.P., Cheng, S.W., Cao, L., Xie, Q.L., Wang, M.Y., Li, B., Jian, Y.Q., Liu, B., Peng, C.Y., Wang, W., 2021. Heilaohuguosus A-S from the fruits of Kadsura coccinea and their hepatoprotective activity. Phytochemistry 184, 112678. https://doi.org/ 10.1016/j.phytochem.2021.112678.
  • Jo, M.S., Yu, J.S., Lee, J.C., Lee, S., Cho, Y.C., Park, H.J., Kim, K.H., 2019. Lobatamunsolides A-C, norlignans from the roots of Pueraria lobata and their nitric oxide inhibitory activities in macrophages. Biomolecules 9 (12), 755. https://doi. org/10.3390/biom9120755.
  • Kaunda, J.S., Qin, X.J., Yang, X.Z., Mwitari, P.G., Zhu, H.T., Wang, D., Zhang, Y.J., 2020. Ten new glycosides, carissaedulosides A-J from the root barks of Carissa edulis and their cytotoxicities. Bioorg. Chem. 102, 104097 https://doi.org/10.1016/j. bioorg.2020.104097.
  • Kim, H.G., Oh, H.J., Ko, J.H., Joo, S.W., Lee, Y.G., Baek, Y.S., Lee, D.Y., Baek, N.I., 2019. A new neolignan glucoside from the stems of "Baekma" cultivar, Chrysanthemum morifolium. Chem. Nat. Compd. 55 (4), 610-613. https://doi.org/10.1007/s10600- 019-02760-1.
  • Komericki, P., Akkilic-Materna, M., Strimitzer, T., Aberer, W., 2011. Efficacy and safety of imiquimod versus podophyllotoxin in the treatment of anogenital warts. Sex. Transm. Dis. 38 (3), 216-218. https://doi.org/10.1097/OLQ.0b013e3181f68ebb.
  • Kuang, F., Liu, Y., Chen, Y.G., Zhan, R., 2020. Aromatic compounds from Endocomia macrocoma. Nat. Prod. Res. 34 (3), 390-397. https://doi.org/10.1080/ 14786419.2018.1534851.
  • Lan, P., Du, M.X., Teng, Y.L., Banwell, M.G., Nie, H., Reaney, M.J.T., Wang, Y., 2019. Structural modifications of a flaxseed lignan in pursuit of higher liposolubility: evaluation of the antioxidant and permeability properties of the resulting derivatives. J. Agric. Food Chem. 67 (51), 14152-14159. https://doi.org/10.1021/ acs.jafc.9b06264.
  • Lau, W., Sattely, E.S., 2015. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349 (6253), 1224-1228. https://doi. org/10.1126/science.aac7202.
  • Le, H.T., Tran, T.H., Le, T.T., Nguyen, V.T., Nguyen, T.A., Nguyen, H.M., Tran, T.M., Nguyen, T.H.P., Ha Tran, T., Nguyen, H.D., Le, D.D., Pham, P.D., Lee, M., 2021.
  • Le, T.H.N., Phan, T.Q., Trinh, T.T., Nguyen, T.T., Nguyen, T.H.A., Thi, T.X., Nguyen, X. N., Bui, H.T., Phan, V.K., 2020. New neolignan and dihydrostilbene derivatives from pouzolzia sanguinea inhibit NO production in LPS-activated BV2 cells. Nat. Prod. Commun. 15 (8), 1-6. https://doi.org/10.1177/1934578x20948360.
  • Lee, J.S., Jeong, M., Park, S., Ryu, S.M., Lee, J., Song, Z., Guo, Y., Choi, J.H., Lee, D., Jang, D.S., 2019. Chemical constituents of theleaves of butterbur (Petasites japonicus) and their anti-inflammatory effects. Biomolecules 9 (12), 806. https://doi.org/ 10.3390/biom9120806.
  • Li, D., Luo, F., Guo, T., Han, S., Wang, H., Lin, Q., 2022. Targeting NF-kappa B pathway by dietary lignans in inflammation: expanding roles of gut microbiota and metabolites. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/ 10408398.2022.2026871.
  • Li, K.M., Dong, X., Ma, Y.N., Wu, Z.H., Yan, Y.M., Cheng, Y.X., 2019a. Antifungal coumarins and lignans from Artemisia annua. Fitoterapia 134, 323-328. https://doi. org/10.1016/j.fitote.2019.02.022.
  • Li, L.C., Ning, D.S., Fu, Y.X., Pan, Z.H., 2021a. Structure elucidation and anti-inflammatory mechanism of difengpienol C, a new neolignan isolated from Illicium difengpi. Fitoterapia 153, 104949. https://doi.org/10.1016/j.fitote.2021.104949.
  • Li, S.J., Liang, Z.Z., Li, J.J., Zhang, X., Zheng, R.H., Zhao, C.Q., 2020a. Update on naturally occurring novel arylnaphthalenes from plants. Phytochem. Rev. 19 (2), 337-403. https://doi.org/10.1007/s11101-020-09668-7.
  • Li, X.T., Xia, H., Wang, L.Y., Xia, G.Y., Qu, Y.H., Shang, X.Y., Lin, S., 2019b. Lignans from the twigs of Litsea cubeba and their bioactivities. Molecules 24 (2), 306. https://doi. org/10.3390/molecules24020306.
  • Li, Y.T., Fu, J., Wang, H.Q., Li, Y., Liu, Y.B., Ma, S.G., Qu, J., Yu, S.S., 2021b. New lignans and diterpenoid glycosides from the fruits of Xanthium italicum Moretti. J. Asian Nat. Prod. Res. 1 https://doi.org/10.1080/10286020.2021.1938557. -10.
  • Li, Z., Li, B.B., Xiu, M.X., Wang, D., Xiong, D.X., Lee, H.S., Cui, L., 2020b. DGAT inhibitory three new lignans from the stem of Eleutherococcus senticosus. Phytochem. Lett. 40, 67-71. https://doi.org/10.1016/j.phytol.2020.09.002.
  • Liang, W., Sun, L.Q., Qian, F., Tian, X.H., 2020. Chemical constituents from the whole plant of Liparis japonica. Biochem. Systemat. Ecol. 92, 104126 https://doi.org/ 10.1016/j.bse.2020.104126.
  • Linder, T., Liu, R.X., Atanasov, A.G., Li, Y.F., Geyrhofer, S., Schwaiger, S., Stuppner, H., Schnurch, M., Dirsch, V.M., Mihovilovic, M.D., 2019. Leoligin-inspired synthetic lignans with selectivity for cell-type and bioactivity relevant for cardiovascular disease. Chem. Sci. 10 (22), 5815-5820. https://doi.org/10.1039/c9sc00446g.
  • Liu, B., Du, S.Z., Kuang, F., Liu, Y., Tian, X.J., Chen, Y.G., Zhan, R., 2019a. Two new lignans from Horsfieldia kingii. Nat. Prod. Res. 33 (1), 95-100. https://doi.org/ 10.1080/14786419.2018.1437429.
  • Liu, G.Z., Liu, Y., Sun, Y.P., Li, X.M., Xu, Z.P., Jiang, P., Rong, X.H., Yang, B.Y., Kuang, H. X., 2020. Lignans and terpenoids from the leaves of Schisandra chinensis. Chem. Biodivers. 17 (4), e2000035 https://doi.org/10.1002/cbdv.202000035.
  • Liu, J., Pandey, P., Wang, X., Adams, K., Qi, X., Chen, J., Sun, H., Hou, Q., Ferreira, D., Doerksen, R.J., Hamann, M.T., Li, S., 2019b. Hepatoprotective tetrahydrobenzocyclooctabenzofuranone lignans from Kadsura longipedunculata. J. Nat. Prod. 82 (10), 2842-2851. https://doi.org/10.1021/acs.jnatprod.9b00576.
  • Lu, X., Li, X.Q., Qin, H.H., Feng, B.M., Cheng, X.H., Yang, Q.X., Yu, D.Y., Shi, L.Y., Yu, Z. X., Fang, X.X., 2019. Two new secolignans from the roots of Urtica fissa. J. Asian Nat. Prod. Res. 21 (2), 165-170. https://doi.org/10.1080/10286020.2017.1411347.
  • Luo, Y., Su, C., Ding, N., Qi, B., Jia, F., Xu, X., Liu, X., Wang, J., Wang, X., Tu, P., Shi, S., 2019. Lignan glycosides from Urena lobata. Molecules 24 (15), 2850. https://doi. org/10.3390/molecules24152850.
  • Lv, H.W., Li, Y.X., Luo, M., Qi, J.M., Fu, Z.F., Zhang, H.J., Guo, Y.Q., Chu, C., Li, H.B., Yan, J.Z., 2022. Two new norlignans from Selaginella pulvinata (Hook. & Grev.) Maxim and their antihyperglycemic activities. Nat. Prod. Res. 36 (1), 279-286. https://doi.org/10.1080/14786419.2020.1779267.
  • Lv, M., Xu, H., Zhang, B., Yu, M., 2018. Synthesis of 2' (2', 6')-(Di) halogenoisoxazolopodophyllic acids-based amides derived from a naturally occurring lignan podophyllotoxin and their acaricidal activity. Heterocycles 97 (1), 541-549. https://doi.org/10.3987/com-17-s(t)12.
  • Ma, Q., Wei, R., Zhang, X., Sang, Z., Dong, J., 2021. Structural elucidation and neuroprotective activities of lignans from the flower buds of Magnolia biondii Pamp. Z. Naturforsch., C: J. Biosci. 76 (3-4), 147-152. https://doi.org/10.1515/znc-2020- 0100.
  • Ma, Q.G., Wei, R.R., Yang, M., Huang, X.Y., Zhong, G.Y., Sang, Z.P., Dong, J.H., Shu, J.C., Liu, J.Q., Zhang, R., Yang, J.B., Wang, A.G., Ji, T.F., Su, Y.L., 2019. Structures and biological evaluation of phenylpropanoid derivatives from Murraya koenigii. Bioorg. Chem. 86, 159-165. https://doi.org/10.1016/j.bioorg.2019.01.038.
  • Ma, Y.F., Bao, Y.R., Zhang, W.J., Ying, X.X., Stien, D., 2020. Four lignans from Portulaca oleracea L. and its antioxidant activities. Nat. Prod. Res. 34 (16), 2276-2282. https:// doi.org/10.1080/14786419.2018.1534852.
  • Mahmoud, B.K., Samy, M.N., Hamed, A.N.E., Abdelmohsen, U.R., Hajar, D., Yamano, Y., Sugimoto, S., Matsunami, K., Kamel, M.S., 2020. Bignanoside A "a new neolignan glucoside" and bignanoside B "a new iridoid glucoside" from Bignonia binata leaves. Phytochem. Lett. 35, 200-205. https://doi.org/10.1016/j.phytol.2019.12.009.
  • Mai, N.T., Doan, V.V., Lan, H.T.T., Anh, B.T.M., Hoang, N.H., Tai, B.H., Nhiem, N.X., Yen, P.H., Park, S.J., Seo, Y., Namkung, W., Kim, S.H., Kiem, P.V., 2021. Chemical constituents from Schisandra sphenanthera and their cytotoxic activity. Nat. Prod. Res. 35 (20), 3360-3369. https://doi.org/10.1080/14786419.2019.1700247.
  • Mali, A.V., Padhye, S.B., Anant, S., Hegde, M.V., Kadam, S.S., 2019. Anticancer and antimetastatic potential of enterolactone: clinical, preclinical and mechanistic perspectives. Eur. J. Pharmacol. 852, 107-124. https://doi.org/10.1016/j. ejphar.2019.02.022.
  • Mi, Q.L., Liang, M.J., Gao, Q., Song, C.M., Huang, H.T., Xu, Y., Wang, J., Deng, L., Yang, G.Y., Guo, Y.D., Chen, Z.Y., Li, X.M., 2020. Arylbenzofuran lignans from the seeds of Arctium lappa and their bioactivity. Chem. Nat. Compd. 56 (1), 53-57. https://doi.org/10.1007/s10600-020-02942-2.
  • Mori, N., 2018. Synthetic studies on optically active furofuran and diarylbutane lignans. Biosci. Biotechnol. Biochem. 82 (1), 1-8. https://doi.org/10.1080/ 09168451.2017.1407235.
  • Mou, L.Y., Wei, M., Wu, H.Y., Hu, L.J., Li, J.L., Li, G.P., 2020a. Structure elucidation of two new norlignans from Anemone vitifolia and their anti-inflammatory activities. Chem. Biodivers. 17 (7), e2000184 https://doi.org/10.1002/cbdv.202000184.
  • Mou, L.Y., Wu, H.Y., Hu, L.J., Wei, M., Li, J.L., Li, G.P., 2020b. Two new lignans from Anemone vitifolia buch.-Ham. and their anti-inflammatory activity. Phytochem. Lett. 38, 133-135. https://doi.org/10.1016/j.phytol.2020.06.001.
  • Mukhija, M., Joshi, B.C., Bairy, P.S., Bhargava, A., Sah, A.N., 2022. Lignans: a versatile source of anticancer drugs. Beni. Suef. Univ. J. Basic. Appl. Sci. 11 (1), 76. https:// doi.org/10.1186/s43088-022-00256-6.
  • Nguyen, L.H., Vu, V.N., Thi, D.P., Tran, V.H., Litaudon, M., Roussi, F., Nguyen, V.H., Chau, V.M., Mai, H.D.T., Pham, V.C., 2020. Cytotoxic lignans from fruits of Cleistanthus tonkinensis. Fitoterapia 140, 104432. https://doi.org/10.1016/j. fitote.2019.104432.
  • Nguyen, N.T., Dang, P.H., Nguyen, H.X., Le, T.H., Do, T.N.V., Nguyen, M.T.T., 2021a. A new lignan from the stems of Buchanania lucida Blume (Anacardiaceae). Nat. Prod. Res. 36 (14), 3737-3740. https://doi.org/10.1080/14786419.2020.1871341.
  • Nguyen, N.T., Duong, T.T.T., Dang, P.H., Nguyen, H.X., Le, T.H., Do, T.N.V., Le, T.D., Tran, T.H., Nguyen, M.T.T., 2021b. A new 7', 9-epoxylignan from the stems of Salacia chinensis. Nat. Prod. Res. https://doi.org/10.1080/14786419.2021.1900178.
  • Ni, H.F., Cai, X., Qiu, X., Liu, L., Ma, X., Wan, L., Ye, H., Chen, L., 2020. Biphenyl-type neolignans from stem bark of Magnolia officinalis with potential anti-tumor activity. Fitoterapia 147, 104769. https://doi.org/10.1016/j.fitote.2020.104769.
  • Ninh, P.T., Ha, C.T.T., Thai, T.H., Hanh, N.P., Khang, N.S., Dung, N.T., Hoai, L.T.T., Chien, T.V., Loc, T.V., Nhu, V.T.Q., Anh, N.T., Hung, T.Q., Sung, T.V., Anh, H.N., Thao, T.T.P., 2021. Chevalierinol A and B, two new neolignan sesquiterpenoids from Magnolia chevalieri. Nat. Prod. Res. 35 (21), 3745-3751. https://doi.org/10.1080/ 14786419.2020.1736061.
  • Nurbek, S., Murata, T., Suganuma, K., Ishikawa, Y., Buyankhishise, B., Kikuchi, T., Byambajav, T., Davaapurev, B.O., Sasaki, K., Batkhuu, J., 2020. Isolation and evaluation of trypanocidal activity of sesquiterpenoids, flavonoids, and lignans in Artemisia sieversiana collected in Mongolia. J. Nat. Med. 74 (4), 750-757. https:// doi.org/10.1007/s11418-020-01429-2.
  • Oufensou, S., Scherm, B., Pani, G., Balmas, V., Fabbri, D., Dettori, M.A., Carta, P., Malbr´an, I., Migheli, Q., Delogu, G., 2019. Honokiol, magnolol and its monoacetyl derivative show strong anti-fungal effect on Fusarium isolates of clinical relevance. PLoS One 14 (9), e0221249. https://doi.org/10.1371/journal.pone.0221249.
  • Pan, L., Fu, L., Jia, X.G., Jia, X.Y., Zhang, T., Zou, Z.M., 2021. New stilbenoligan and flavonoid from the roots of Caragana stenophylla Pojark. and their anti-inflammatory activity. J. Asian Nat. Prod. Res. 23 (7), 627-636. https://doi.org/10.1080/ 10286020.2021.1918119.
  • Pan, Z.H., Cheng, L., Ning, D.S., Peng, L.Y., Fu, Y.X., Li, L.C., 2019. Difengpienols A and B, two new sesqui-neolignans with anti-inflammatory activity from the bark of Illicium difengpi. Phytochem. Lett. 30, 210-214. https://doi.org/10.1016/j. phytol.2019.02.023.
  • Pereira, G.R., Ferreira, A.C.G., Costa, F., Munhoz, V., Alvarenga, D., Silva, B.M., Reis, A. C.C., Brandao t, G.C., 2021. Novel. lignan-based compounds via click chemistry: paulownin isolation, structural modifications and cytotoxic activity evaluations. Nat. Prod. Res. 35 (21), 3820-3823. https://doi.org/10.1080/14786419.2020.1739683.
  • Qi, X.Z., Liu, J.B., Chen, J.B., Hou, Q., Li, S., 2020. New seco-dibenzocyclooctadiene lignans with nitric oxide production inhibitory activity from the roots of Kadsura longipedunculata. Chin. Chem. Lett. 31 (2), 423-426. https://doi.org/10.1016/j. cclet.2019.06.006.
  • Qin, F., Wang, F.F., Wang, C.G., Chen, Y., Li, M.S., Zhu, Y.K., Huang, X.C., Fan, C.W., Wang, H.S., 2021. The neurotrophic and antineuroinflammatory effects of phenylpropanoids from Zanthoxylum nitidum var. tomentosum (Rutaceae). Fitoterapia 153, 104990. https://doi.org/10.1016/j.fitote.2021.104990.
  • Radulovic, N., Stevanovic, M., Nesic, M., Stojanovic, N., Randelovic, P., Randelovic, V., 2020. Constituents of Bupleurum praealtum and Bupleurum veronense with potential immunomodulatory activity. J. Nat. Prod. 83 (10), 2902-2914. https://doi.org/ 10.1021/acs.jnatprod.0c00437.
  • Raju, R., Cullen, J.K., Bruce, Z.C., Reddell, P., Munch, G., 2021. Eupomatenes A - E: neolignans isolated from the leaves of Australian rainforest plant Eupomatia laurina. Fitoterapia 153, 104972. https://doi.org/10.1016/j.fitote.2021.104972.
  • Rao, L., You, Y.X., Su, Y., Fan, Y., Liu, Y., He, Q., Chen, Y., Meng, J., Hu, L., Li, Y., Xu, Y. K., Lin, B., Zhang, C.R., 2020. Lignans and neolignans with antioxidant and human cancer cell proliferation inhibitory activities from Cinnamomum bejolghota confirm its functional food property. J. Agric. Food Chem. 68 (33), 8825-8835. https://doi. org/10.1021/acs.jafc.0c02885.
  • Rattanaburee, T., Thongpanchang, T., Wongma, K., Tedasen, A., Sukpondma, Y., Graidist, P., 2019. Anticancer activity of synthetic (+/-)-kusunokinin and its derivative (+/-)-bursehernin on human cancer cell lines. Biomed. Pharmacother. 117, 109115 https://doi.org/10.1016/j.biopha.2019.109115.
  • Rattanaburi, S., Kaikaew, K., Watanapokasin, R., Phongpaichit, S., Mahabusarakamb, W., 2022. A new lignan from the stem bark of Fagraea fragrans Roxb. Nat. Prod. Res. 36 (7), 1851-1856. https://doi.org/10.1080/14786419.2020.1821020.
  • Rios, M.Y., Ocampo-Acuna t, Y.D., Ramirez-Cisneros, M., Salazar-Rios, M.E., 2020. Furofuranone lignans from Leucophyllum ambiguum. J. Nat. Prod. 83 (5), 1424-1431. https://doi.org/10.1021/acs.jnatprod.9b00759.
  • San, T.T., Wang, Y.H., Hu, D.B., Yang, J., Zhang, D.D., Xia, M.Y., Yang, X.F., Yang, Y.P., 2021. A new sesquineolignan and four new neolignans isolated from the leaves of Piper betle, a traditional medicinal plant in Myanmar. Bioorg. Med. Chem. Lett. 31, 127682 https://doi.org/10.1016/j.bmcl.2020.127682.
  • Senizza, A., Rocchetti, G., Mosele, J.I., Patrone, V., Callegari, M.L., Morelli, L., Lucini, L., 2020. Lignans and gut microbiota: an interplay revealing potential health implications. Molecules 25 (23), 5709. https://doi.org/10.3390/ molecules25235709.
  • Shang, X.Y., Guo, R., Yu, X.Q., Lin, B., Huang, X.X., Yao, G.D., Song, S.J., 2020. Enantiomeric 8-O -4'-type neolignans from Crataegus pinnatifida exhibit cytotoxic effect via apoptosis and autophagy in Hep3B cells. Bioorg. Chem. 104, 104267 https://doi.org/10.1016/j.bioorg.2020.104267.
  • Shao, S.Y., Qi, X.Z., Sun, H., Li, S., 2020. Hepatoprotective lignans and triterpenoids from the roots of Kadsura longipedunculata. Fitoterapia 142, 104487. https://doi.org/ 10.1016/j.fitote.2020.104487.
  • Shehla, N., Li, B., Zhao, J., Cao, L., Jian, Y., Khan, I.A., Liao, D.F., Rahman, A.U., Choudhary, M.I., Wang, W., 2022. New dibenzocyclooctadiene lignan from stems of Kadsura heteroclita. Nat. Prod. Res. 36 (7), 8-17. https://doi.org/10.1080/ 14786419.2020.1758378.
  • Sifan, L., Zanxin, X., Guangjie, Z., Junxing, D., 2021. Lignan derivatives and a jasmonic acid derivative from the seeds of Orychophragmus violaceus. Nat. Prod. Res. 1-7. https://doi.org/10.1080/14786419.2021.1886100.
  • Sifouane, S., Benabdelaziz, I., Benkhaled, M., Gomez-Ruiz, S., Carralero, S., Haba, H., 2020. A new aryltetralin lignan and other phytoconstituents from Atractylis humilis. Biochem. Systemat. Ecol. 90, 104018 https://doi.org/10.1016/j.bse.2020.104018.
  • Soleymani, S., Habtemariam, S., Rahimi, R., Nabavi, S.M., 2020. The what and who of dietary lignans in human health: special focus on prooxidant and antioxidant effects. Trends Food Sci. Technol. 106, 382-390. https://doi.org/10.1016/j. tifs.2020.10.015.
  • Solyomvary, A., Beni, S., Boldizsar, I., 2017. Dibenzylbutyrolactone lignans - a review of their structural diversity, biosynthesis, occurrence, identification and importance. Mini Rev. Med. Chem. 17 (12), 1053-1074. https://doi.org/10.2174/ 1389557516666160614005828.
  • Song, X.Q., Sun, J., Yu, J.H., Zhang, J.S., Bao, J., Zhang, H., 2020. Prenylated indole alkaloids and lignans from the flower buds of Tussilago farfara. Fitoterapia 146, 104729. https://doi.org/10.1016/j.fitote.2020.104729.
  • Su, X.M., Liang, Q., Zhang, X.M., Yao, Z.Y., Xu, W.H., 2020. Four new chemical constituents from Piper pleiocarpum. Fitoterapia 143, 104544. https://doi.org/ 10.1016/j.fitote.2020.104544.
  • Sukbangnop, W., Hosen, A., Hongthong, S., Kuhakarn, C., Tuchinda, P., Chaturonrutsamee, S., Thanasansurapong, S., Akkarawongsapat, R., Limthongkul, J., Napaswad, C., Chairoungdua, A., Suksen, K., Nuntasaen, N., Reutrakul, V., 2021. Bioactive tetrahydrofuran lignans from roots, stems, leaves and twigs of Anogeissus rivularis. Fitoterapia 151, 104885. https://doi.org/10.1016/j.fitote.2021.104885.
  • Sun, C., Shi, X.B., Hou, Q., Song, Z.X., 2019. Lignans from roots and rhizomes of Diphylleia sinensis. Chin. Tradit. Herb. Drugs 50 (21), 5193-5197.
  • Sun, Y., Zeng, Q.H., Lu, H.Q., Meng, F.C., Shen, Y., Zeng, W.Y., Chi, H., Zhou, Y.Q., Chen, M., 2022. Two new lignans from Zanthoxylum armatum. Nat. Prod. Res. 36 (13), 3331-3336. https://doi.org/10.1080/14786419.2020.1855646.
  • Teodor, E.D., Moroeanu, V., Radu, G.L., 2020. Lignans from medicinal plants and their anticancer effect. Mini Rev. Med. Chem. 20 (12), 1083-1090. https://doi.org/ 10.2174/1389557520666200212110513.
  • Thongphichai, W., Tuchinda, P., Pohmakotr, M., Reutrakul, V., Akkarawongsapat, R., Napaswad, C., Limthongkul, J., Jenjittikul, T., Saithong, S., 2019. Anti-HIV-1 activities of constituents from the rhizomes of Boesenbergia thorelii. Fitoterapia 139, 104388. https://doi.org/10.1016/j.fitote.2019.104388.
  • Tian, Z.H., Liu, F., Peng, F., He, Y.L., Shu, H.Z., Lin, S., Chen, J.F., Peng, C., Xiong, L., 2021. New lignans from the fruits of Leonurus japonicus and their hepatoprotective activities. Bioorg. Chem. 115, 105252 https://doi.org/10.1016/j. bioorg.2021.105252.
  • Tong, C., Chen, R.H., Liu, D.C., Zeng, D.S., Liu, H., 2020. Chemical constituents from the fruits of Xanthium strumarium and their antitumor effects. Nat. Prod. Commun. 15 (8), 1-5. https://doi.org/10.1177/1934578x20945541.
  • Tu, P.C., Liang, Y.C., Kao, M.C., Chao, L.K., Tseng, M.H., Lu, T.L., Sung, P.J., Kuo, Y.H., 2021. Phenylpropanoids and lignoids from the whole plant of Vaccinium emarginatum and their cytotoxicity against prostate cancer cells. Nat. Prod. Res. 35 (12), 2028-2036. https://doi.org/10.1080/14786419.2019.1655412.
  • Van Nguyen Thien, T., Do, L.T.M., Dang, P.H., Huynh, N.V., Dang, H.P., Nguyen, T.T., Tran, K.T., Nguyen Huu, D.M., Ton That, Q., 2021. A new lignan from the flowers of Hibiscus sabdariffa L. (Malvaceae). Nat. Prod. Res. 35 (13), 2218-2223. https://doi. org/10.1080/14786419.2019.1667354.
  • Vu, V.T., Xu, X.J., Chen, K., Nguyen, M.T., Nguyen, B.N., Pham, G.N., Kong, L.Y., Luo, J. G., 2021. New oligomeric neolignans from the leaves of Magnolia officinalis var. biloba. Chin. J. Nat. Med. 19 (7), 491-499. https://doi.org/10.1016/s1875-5364 (21)60048-1.
  • Wang, D.T., Xue, Y.Y., Zhang, Y.F., Xun, H., Guo, Q.R., Tang, F., Sun, J., Qi, F.F., 2021a. Lignans and phenylpropanoids from the liquid juice of phyllostachys edulis. Nat. Prod. Res. 35 (19), 3241-3247. https://doi.org/10.1080/14786419.2019.1693568.
  • Wang, F., Zhang, L., Zhang, Q., Wang, S.M., Fang, Z.F., 2021b. Neolignan and phenylpropanoid compounds from the resin of Styrax tonkinensis. J. Asian Nat. Prod. Res. 23 (6), 527-535. https://doi.org/10.1080/10286020.2021.1910240.
  • Wang, G.K., Jin, W.F., Zhang, N., Wang, G., Cheng, Y.Y., Morris-Natschke, S.L., Goto, M., Zhou, Z.Y., Liu, J.S., Lee, K.H., 2020a. Kalshiolin A, new lignan from Kalimeris shimadai. J. Asian Nat. Prod. Res. 22 (5), 489-495. https://doi.org/10.1080/ 10286020.2019.1592164.
  • Wang, M., Huo, L., Liu, H., Zhao, L., Xu, Z., Tan, H., Qiu, S.X., 2020b. Thujasutchins N and O, two new compounds from the stems and roots of Thuja sutchuenensis. Nat. Prod. Res. 36 (9), 2356-2362. https://doi.org/10.1080/14786419.2020.1836627.
  • Wang, M.Y., Zhan, Z.B., Xiong, Y., Zhang, H., Li, X.B., 2020c. New cytotoxic constituents in the water-soluble fraction from Momordicae semen. Nat. Prod. Res. 34 (6), 823-829. https://doi.org/10.1080/14786419.2018.1508146.
  • Wang, M.Y., Zhan, Z.B., Xiong, Y., Zhang, Y., Li, X.B., 2019a. Cytotoxic and anti-inflammatory constituents from Momordica cochinchinensis seeds. Fitoterapia 139, 104360. https://doi.org/10.1016/j.fitote.2019.104360.
  • Wang, M.Y., Zhang, Y., Zhang, H., Feng, X.R., Li, X.B., 2019b. New lignans from urticae fissae herba. J. Asian Nat. Prod. Res. 21 (6), 516-521. https://doi.org/10.1080/ 10286020.2018.1457652.
  • Wang, W., Ma, X.J., Su, Y.F., Gao, Z.J., Qin, T., Gao, B., Guo, D.A., 2020d. Two new neolignans and one new benzyl benzoate glycoside from Potentilla discolor. Phytochem. Lett. 39, 25-29. https://doi.org/10.1016/j.phytol.2020.06.011.
  • Wang, Z.X., Zhang, L., Zhao, J.P., Wu, J.P., Peng, Z.R., Wang, Y., Liu, Y.L., Xu, Q.M., Yang, S.L., Khan, I.A., 2020e. Anti-inflammatory and cytotoxic lignans from Potentilla anserina. Rev. Bras. Farmacogn. 30 (5), 678-682. https://doi.org/10.1007/ s43450-020-00094-6.
  • Wei, R.R., Ma, Q., Zhong, G.Y., He, J.W., Sang, Z.P., 2020. Isolation and characterization of flavonoid derivatives with anti-prostate cancer and hepatoprotective activities from the flowers of Hosta plantaginea (Lam.) Aschers. J. Ethnopharmacol. 253, 112685 https://doi.org/10.1016/j.jep.2020.112685.
  • Woo, S.Y., Hoshino, S., Wong, C.P., Win, N.N., Awouafack, M.D., Prema Ngwe, H., Zhang, H., Hayashi, F., Abe, I., Morita, H., 2019. Lignans with melanogenesis effects from Premna serratifolia wood. Fitoterapia 133, 35-42. https://doi.org/10.1016/j. fitote.2018.12.008.
  • Xi, Y.F., Liu, S.F., Hong, W., Song, X.Y., Lou, L.L., Zhou, L., Yao, G.D., Lin, B., Wang, X.B., Huang, X.X., Song, S.J., 2019. Discovery of cycloneolignan enantiomers from Isatis indigotica Fortune with neuroprotective effects against MPP(+)-induced SH-SY5Y cell injury. Bioorg. Chem. 88, 102926 https://doi.org/10.1016/j. bioorg.2019.102926.
  • Xia, H., Xia, G.Y., Wang, L.Y., Wang, M., Wang, Y.N., Lin, P.C., Lin, S., 2021. Bioactive sesquineolignans from the twigs of Litsea cubeba. Chin. J. Nat. Med. 19 (10), 796-800. https://doi.org/10.1016/s1875-5364(21)60075-4.
  • Xiao, L., Huang, Y., Wang, Y., Xu, J., He, X., 2020a. Anti-neuroinflammatory benzofurans and lignans from Praxelis clematidea. Fitoterapia 140, 104440. https://doi.org/ 10.1016/j.fitote.2019.104440.
  • Xiao, S.J., Zhang, M.S., Chen, F., Ding, L.S., Zhou, Y., 2020b. Two new lignans from Gymnotheca involucrata. Nat. Prod. Res. 34 (3), 329-334. https://doi.org/10.1080/ 14786419.2018.1530997.
  • Xie, J.Y., Zhang, G.L., Yu, Z.G., 2019. Extraction, separation and antibacterial activity of furofuran lignans from Artemisia lavandulaefolia DC. Chin. J. Pesticide Sci. 21 (3), 383-388.
  • Xiong, W.C., Yang, Y.F., Xiong, Y.Y., Liu, B., Xie, Z.T., Wu, H.Z., 2020. A new neolignan from Justicia Procumbens. Chem. Nat. Compd. 56 (1), 50-52. https://doi.org/ 10.1007/s10600-020-02941-3.
  • Xu, W.H., Su, X.M., Zhang, X.M., Qi, J., Wang, D., Wang, M., Liang, Q., 2020. Pleiocarpumlignan A, a new dineolignan from Piper pleiocarpum Chang ex Tseng. Nat. Prod. Res. 34 (19), 2809-2815. https://doi.org/10.1080/ 14786419.2019.1593167.
  • Xu, X.W., Chen, C.X., Nan, Z.D., Sheng, W.B., Gong, L.M., Zhou, X.D., 2021. Phenolic and acid derivatives from Artemisia sieversiana. Chem. Nat. Compd. 57 (2), 250-253. https://doi.org/10.1007/s10600-021-03329-7.
  • Xu, X.Y., Wang, D.Y., Ku, C.F., Zhao, Y., Cheng, H., Liu, K.L., Rong, L.J., Zhang, H.J., 2019. Anti-HIV lignans from Justicia procumbens. Chin. J. Nat. Med. 17 (12), 945-952. https://doi.org/10.1016/s1875-5364(19)30117-7.
  • Yan, Y.X., Yan, L.J., Wang, Y.C., Bei, Y.X., 2021. A new lignan from the leaves of Orthosiphon aristatus. Chem. Nat. Compd. 57 (2), 254-256. https://doi.org/10.1007/ s10600-021-03330-0.
  • Yang, B.Y., Chen, Z.L., Liu, Y., Guo, J.T., Kuang, H.X., 2019a. New lignan from the rattan stems of Schisandra chinensis. Nat. Prod. Res. 33 (3), 340-346. https://doi.org/ 10.1080/14786419.2018.1452000.
  • Yang, C., Li, T., Jiang, L., Zhi, X., Cao, H., 2020a. Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents. Bioorg. Chem. 94, 103469 https://doi.org/10.1016/j. bioorg.2019.103469.
  • Yang, F., Yaseen, A., Chen, B., Li, F., Wang, L., Hu, W.C., Wang, M.K., 2020b. Chemical constituents from the fruits of Phyllanthus emblica L. Biochem. Systemat. Ecol. 92, 104122 https://doi.org/10.1016/j.bse.2020.104122.
  • Wang, S.H., Zhou, X.L., Liu, B., Wang, W., 2019b. New lignans from roots of Kadsura coccinea. Fitoterapia 139, 104368. https://doi.org/10.1016/j.fitote.2019.104368.
  • Ye, C.Q., Zhang, J.Y., Ye, Z.C., Xiao, M.T., Zhou, X.D., Ye, J., 2020. A new lignan from Schefflera arboricola. J. Chem. Res. 44 (9-10), 532-535. https://doi.org/10.1177/ 1747519820910383.
  • Chen, H.F., 2021. Lignans and phenylpropanoids from the roots of Ficus hirt a and their cytotoxic activities. Nat. Prod. Res. https://doi.org/10.1080/ 14786419.2021.1892099.
  • Yi, M., Meng, F.C., Qu, S.Y., Mao, J.X., Wang, G., Liu, M., Liao, Z.H., Chen, M., 2021. Dolominol a and B, two new neolignans from Dolomiaea souliei (Franch.) C.Shih. Nat. Prod. Res. https://doi.org/10.1080/14786419.2021.1897125.
  • Yi, M., Meng, F.C., Qu, S.Y., Tao, Y.Y., Liao, Z.H., Chen, M., 2020. A new neolignan glycoside from Dolomiaea souliei. Nat. Prod. Res. 34 (8), 1124-1130. https://doi.org/ 10.1080/14786419.2018.1552695.
  • Zalesak, F., Bon, D., Pospisil, J., 2019. Lignans and neolignans: plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 146, 104284 https://doi.org/10.1016/j.phrs.2019.104284.
  • Zhang, B.B., Yu, H.T., Lil, W., Yu, B., Liu, L., Jia, W.J., Lin, Z.T., Wang, H., Chen, S.Z., 2019a. Four new honokiol derivatives from the stem bark of Magnolia officinalis and their anticholinesterase activities. Phytochem. Lett. 29, 195-198. https://doi.org/ 10.1016/j.phytol.2018.12.015.
  • Zhang, H., Wang, S., Liu, Q., Zheng, H., Liu, X., Wang, X., Shen, T., Ren, D., 2021a. Dracomolphin A-E, new lignans from Dracocephalum moldavica. Fitoterapia 150, 104841. https://doi.org/10.1016/j.fitote.2021.104841, 104841.
  • Zhang, H., Zhang, Y., Wang, Y., Zhan, R., Chen, Y., 2019b. A new neolignan from the thorns of Gleditsia japonica var. delavayi. Nat. Prod. Res. 33 (2), 239-243. https:// doi.org/10.1080/14786419.2018.1443101.
  • H., Cuong, N.M., Soejarto, D.D., Fong, H.H.S., Rong, L.J., 2017. Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. J. Nat. Prod. 80 (6), 1798-1807. https://doi.org/10.1021/acs.jnatprod.7b00004.
  • Zhang, J.S., Cao, X.X., Zhang, H., 2020a. Chemical constituents from the fruits of
  • Zhang, J.S., Xu, D.F., Cao, X.X., Wang, Y.Y., Zhang, H., 2021b. Lignans with NO inhibitory activity from Tinospora sinensis. Chin. J. Nat. Med. 19 (7), 500-504. https://doi.org/10.1016/s1875-5364(21)60049-3.
  • Zhang, L., Wang, X.L., Wang, B., Zhang, L.T., Gao, H.M., Shen, T., Lou, H.X., Ren, D.M., Wang, X.N., 2022. Lignans from Euphorbia hirta L. Nat. Prod. Res. 36 (1), 26-36. https://doi.org/10.1080/14786419.2020.1761358.
  • Zhang, X., Rui, M.J., Xu, H.T., Chou, G.X., 2020b. Lignans, monoterpenes and γ -pyrone Derivatives from Patrinia scabiosifolia with cytotoxic activity against HCT-116 cells. Chem. Biodivers. 17 (10), e2000397 https://doi.org/10.1002/cbdv.202000397.
  • Zhang, Y., Liu, J., Guo, Z., Li, X., Wang, M., 2021c. Chemical constituents from Urtica fissa stem and their inhibitory effects on α -glucosidase activity. Nat. Prod. Res. 35
  • Zhang, Y.L., Pan, Q.M., Zhang, G.J., Liang, D., 2019c. Studies on chemical constituents of stem and leaf of Sapium discolor. Zhongguo Zhongyao Zazhi 44 (17), 3738-3744. https://doi.org/10.19540/j.cnki.cjcmm.20190614.201.
  • Li, Y., 2019d. New lignans, sesquiterpenes and other constituents from twigs and leaves of Rhododendron micranthum. Fitoterapia 135, 15-21. https://doi.org/ 10.1016/j.fitote.2019.03.025.
  • Zhao, C.C., Chen, J., Shao, J.H., Shen, J., Gu, W.Y., Zhang, X.H., Sha, Y.S., 2020a. Lignan glycosides from the stems of Viburnum melanocarpum and their alpha-glucosidase inhibitory activity. Holzforschung 74 (1), 88-93. https://doi.org/10.1515/hf-2019- 0159.
  • Zhao, C.C., Chen, J., Shao, J.H., Zhang, X.H., Gu, W.Y., Shen, J., Liu, Y., 2020b. Lignan constituents from the fruits of Viburnum macrocephalum f. keteleeri and their alphaamylase, alpha-glucosidase, and protein tyrosine phosphatase 1B inhibitory activities. J. Agric. Food Chem. 68 (40), 11151-11160. https://doi.org/10.1021/acs. jafc.0c03353.
  • Zhao, P., Lou, L.L., Zhang, H., Guo, R., Wang, X.B., Huang, X.X., Song, S.J., 2021. A new dineolignan with anti- β -amyloid aggregation activity from the fruits of Crataegus pinnatifida Bge. Nat. Prod. Res. 35 (12), 2112-2115. https://doi.org/10.1080/ 14786419.2019.1655415.
  • Zhao, P., Qiu, S., Hou, Z.L., Xue, X.B., Yao, G.D., Huang, X.X., Song, S.J., 2020c. Sesquineolignans derivatives with neuroprotective activity from the fruits of
  • Zheng, H., Wang, L., Yang, T., Liu, D., Li, H.M., Chen, X.Q., Li, R.T., 2020. New terpenoids and lignans from the twigs of Tripterygium hypoglaucum. Nat. Prod. Res.
  • 34 (13), 1853-1861. https://doi.org/10.1080/14786419.2018.1564297.
  • Zheng, Y.K., Wang, Y.Q., Su, B.J., Wang, H.S., Liao, H.B., Liang, D., 2022. New enantiomeric lignans and new meroterpenoids with nitric oxide release inhibitory activity from Piper puberulum. Bioorg. Chem. 119, 105522 https://doi.org/10.1016/ j.bioorg.2021.105522.
  • Zhou, D., Li, Y., Chen, G., Yang, Y.Q., Mi, Y., Lin, B., Li, W., Hou, Y., Li, N., 2020a. Structural elucidation and anti-neuroinflammatory activities of lignans from the testas of Vernicia montana. Bioorg. Chem. 97, 103690 https://doi.org/10.1016/j. bioorg.2020.103690.
  • Zhou, J., He, X., Sun, R., Yu, Z., Wang, C., Deng, S., Zhang, B., Huang, S., Han, C., Li, D., 2021a. Lignans from Bupleurum marginatum and their antioxidant activity. Nat. Prod.
  • Zhou, X.D., Chen, C.X., Zheng, X.K., Gong, L.M., Zeng, K.W., Wang, W., Tu, P.F., 2021b. Dibenzocyclooctadiene lignans from Artemisia sieversiana and their anti-inflammatory activities. J. Nat. Med. 75 (4), 1014-1020. https://doi.org/10.1007/ s11418-021-01532-y.
  • Zhou, Y., Jin, M., Jin, C.S., Ye, C., Wang, J.M., Sun, J.F., Wei, C.X., Zhou, W., Li, G., 2020b. A new aryldihydronaphthalene-type lignan and other metabolites with potential anti- inflammatory activities from Corispermum mongolicum Iljin. Nat. Prod. Res. 34 (2), 225-232. https://doi.org/10.1080/14786419.2018.1527835.
  • Zhu, S.S., Zhang, G.J., Liao, H.B., Wang, H.S., Liang, D., 2019. A new chlorinated diphenyl ether and a new sesquilignan from the stems of Mappianthus tomentosus. Phytochem. Lett. 30, 49-52. https://doi.org/10.1016/j.phytol.2019.01.018.
  • Zhu, T.H., Wang, Y.F., Jiang, T., Zhao, L.K., Mi, H., Ji, Y.N., Sauriol, F., Wu, Y.B., Gu, Y. C., Dong, M., Ni, Z.Y., 2021. Two new lignans from the fresh bark of Ailanthus altissima. Chem. Nat. Compd. 57 (3), 422-424. https://doi.org/10.1007/s10600- 021-03379-x.
  • Zou, Y.Y., Wang, D.W., Yan, Y.M., Cheng, Y.X., 2021. Lignans from Lepidium meyenii and their anti-inflammatory activities. Chem. Biodivers. 18 (8), e2100231 https://doi. org/10.1002/cbdv.202100231.