Published January 31, 2022 | Version v1
Journal article Restricted

Rapid screening of glycosyltransferases in plants using a linear DNA expression template based cell-free transcription-translation system

  • 1. *, & *** & College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

Description

Guo, Shaobin, Wang, Mingdi, Xu, Wen, Zou, Fuxian, Lin, Jingjing, Peng, Qin, Xu, Wei, Xu, Shaohua, Shi, Xianai (2022): Rapid screening of glycosyltransferases in plants using a linear DNA expression template based cell-free transcription-translation system. Phytochemistry (113007) 193: 1-9, DOI: 10.1016/j.phytochem.2021.113007, URL: http://dx.doi.org/10.1016/j.phytochem.2021.113007

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

References

  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B., 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233-D238. https://doi.org/10.1093/nar/ gkn663.
  • De Luca, V., Salim, V., Atsumi, S.M., Yu, F., 2012. Mining the biodiversity of plants: a revolution in the making. Science 336, 1658-1661. https://doi.org/10.1126/ science.1217410.
  • Du, X.-M., Irino, N., Furusho, N., Hayashi, J., Shoyama, Y., 2008. Pharmacologically active compounds in the Anoectochilus and Goodyera species. J. Nat. Med. 62, 132-148. https://doi.org/10.1007/s11418-007-0169-0.
  • Gan, R., Jewett, M.C., 2014. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe. Biotechnol. J. 9, 641-651. https://doi.org/10.1002/biot.201300545.
  • Jiang, L., Zhao, J., Lian, J., Xu, Z., 2018. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synth. Syst. Biotechnol. 3, 90-96. https://doi.org/10.1016/j.synbio.2018.02.003.
  • Karim, A.S., Heggestad, J.T., Crowe, S.A., Jewett, M.C., 2018. Controlling cell-free metabolism through physiochemical perturbations. Metab. Eng. 45, 86-94. https:// doi.org/10.1016/j.ymben.2017.11.005.
  • Levine, M.Z., Gregorio, N.E., Jewett, M.C., Watts, K.R., Oza, J.P., 2019. Escherichia coli - based cell-free protein synthesis: protocols for a robust, flexible, and accessible platform technology. JoVE 1-11. https://doi.org/10.3791/58882.
  • Li, J., Liu, X., Gao, Y., Zong, G., Wang, D., Liu, M., Fei, S., Wei, Y., Yin, Z., Chen, J., Wang, X., Shen, Y., 2019. Identification of a UDP-Glucosyltransferase favouring substrate- and regio-specific biosynthesis of flavonoid glucosides in Cyclocarya paliurus. Phytochemistry 163, 75-88. https://doi.org/10.1016/j. phytochem.2019.04.004.
  • Li, Y., Lin, H.X., Wang, J., Yang, J., Lai, C.J., Wang, X., Ma, B.W., Tang, J.F., Li, Y., Li, X. L., Guo, J., Gao, W., Huang, L.Q., 2018. Glucosyltransferase capable of catalyzing the last step in neoandrographolide biosynthesis. Org. Lett. 20, 5999-6002. https://doi. org/10.1021/acs.orglett.8b02146.
  • Lim, E.-K., Ashford, D.A., Hou, B., Jackson, R.G., Bowles, D.J., 2004. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol. Bioeng. 87, 623-631. https://doi.org/ 10.1002/bit.20154.
  • Lu, Y., 2017. Cell-free synthetic biology: engineering in an open world. Synth. Syst. Biotechnol. 2, 23-27. https://doi.org/10.1016/j.synbio.2017.02.003.
  • Ma, B., Liu, X., Lu, Y., Ma, X., Wu, X., Wang, X., Jia, M., Su, P., Tong, Y., Guan, H., Jiang, Z., Gao, J., Huang, L., Gao, W., 2019. A specific UDP-glucosyltransferase catalyzes the formation of triptophenolide glucoside from Tripterygium wilfordii Hook. f. Phytochemistry 166, 112062. https://doi.org/10.1016/j. phytochem.2019.112062.
  • Patridge, E., Gareiss, P., Kinch, M.S., Hoyer, D., 2016. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today 21, 204-207. https://doi.org/10.1016/j.drudis.2015.01.009.
  • Pickens, L.B., Tang, Y., Chooi, Y.H., 2011. Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2, 211-236. https://doi.org/10.1146/ annurev-chembioeng-061010-114209.
  • Salehi, A.S.M., Smith, M.T., Bennett, A.M., Williams, J.B., Pitt, W.G., Bundy, B.C., 2016. Cell-free protein synthesis of a cytotoxic cancer therapeutic: onconase production and a just-add-water cell-free system. Biotechnol. J. 11, 274-281. https://doi.org/ 10.1002/biot.201500237.
  • Schinn, S.M., Broadbent, A., Bradley, W.T., Bundy, B.C., 2016. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA. N. Biotech. 33, 480-487. https://doi.org/10.1016/j.nbt.2016.04.002.
  • Sun, Z.Z., Hayes, C.A., Shin, J., Caschera, F., Murray, R.M., Noireaux, V., 2013. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. JoVE, e50762. https://doi.org/10.3791/50762.
  • Sun, Z.Z., Yeung, E., Hayes, C.A., Noireaux, V., Murray, R.M., 2014. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth. Biol. 3, 387-397. https://doi.org/10.1021/sb400131a.
  • Takai, K., Sawasaki, T., Endo, Y., 2010. The wheat-germ cell-free expression system. Curr. Pharmaceut. Biotechnol. 11, 131-144. https://doi.org/10.2174/ 138920110791111933.
  • Tiwari, P., Sangwan, R.S., Sangwan, N.S., 2016. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol. Adv. 34, 714-739. https://doi.org/10.1016/j.biotechadv.2016.03.006.
  • Wang, Z., Wang, S., Xu, Z., Li, M., Chen, K., Zhang, Y., Hu, Z., Zhang, M., Zhang, Z., Qiao, X., Ye, M., 2019. Highly promiscuous flavonoid 3- O-glycosyltransferase from scutellaria baicalensis. Org. Lett. 21, 2241-2245. https://doi.org/10.1021/acs. orglett.9b00524.
  • Ye, S., Shao, Q., Zhang, A., 2017. Anoectochilus roxburghii: a review of its phytochemistry, pharmacology, and clinical applications. J. Ethnopharmacol. 209, 184-202. https:// doi.org/10.1016/j.jep.2017.07.032.
  • Zhang, X., Zhu, Y., Ye, J., Ye, Z., Zhu, R., Xie, G., Zhao, Y., Qin, M., 2021. Iris domestica (iso)flavone 7- and 3'-O-glycosyltransferases can be induced by CuCl2. Front. Plant Sci. 12 https://doi.org/10.3389/fpls.2021.632557, 632557-632557.
  • Zou, F., Xu, W., Huang, Z., Zhang, X., Chen, S., Lin, Y., Xu, W., 2019. Analysis of transcriptome sequencing and related genes of flavonoid biosynthesis from Anoectochilus roxburghii. J. China Pharm. Univ. 50, 66-74. https://doi.org/ 10.11665/j.issn.1000-5048.20190109.