Published February 28, 2022 | Version v1
Journal article Restricted

The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds

Description

Wojtaczka, Patrycja, Ciarkowska, Anna, Starzynska, Ewelina, Ostrowski, Maciej (2022): The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry (113039) 194: 1-16, DOI: 10.1016/j.phytochem.2021.113039, URL: http://dx.doi.org/10.1016/j.phytochem.2021.113039

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:964CB520FFB9862C5D16FFDC7426A730

References

  • Aoi, Y., Tanaka, K., Cook, S.D., Hayashi, K.I., Kasahara, H., 2020. GH3 auxinamidosynthetases alter the ratio of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Plant Cell Physiol. 61, 596-605. https://doi.org/10.1093/pcp/pcz223.
  • Avanci, N.C., Luche, D.D., Goldman, G.H., Goldman, M.H., 2010. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet. Mol. Res. 9, 484-505. https://doi.org/10.4238/vol9-1gmr754.
  • Bierfreund, N.M., Tintelnot, S., Reski, R., Decker, E.L., 2004. Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens. J. Plant Physiol. 161, 823-835. https://doi.org/10.1016/j.jplph.2003.12.010.
  • B¨ottcher, C., Burbidge, C.A., di Rienzo, V., Boss, P.K., Davies, C., 2015. Jasmonic acidisoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles. J. Integr. Plant Biol. 57, 618-627. https://doi.org/10.1111/ jipb.12321.
  • Chen, C.Y., Ho, S.S., Kuo, T.Y., Hsieh, H.L., Cheng, Y.S., 2017. Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione S-transferase FIP1 during the JA signal regulation. Proc. Natl. Acad. Sci. U.S.A. 114, E1815-E1824. https://doi.org/10.1073/pnas.1609980114.
  • Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., Hsieh, H.L., 2007. Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome Amediated signaling in Arabidopsis. Plant Physiol. 143, 1189-1202. https://doi.org/ 10.1104/pp.106.094185.
  • Chen, M., He, Y., Xu, L., Peng, A., Lei, T., Yao, L., Li, Q., Zhou, P., Bai, X., Duan, M., Jiang, X., Jia, R., Zou, X., Chen, S., 2016. Cloning and expression analysis of citrus genes CsGH3.1 and CsGH3.6 responding to Xanthomonas axonopodis pv. citri infection. Hortic. Plant J. 2, 18-27. https://doi.org/10.1016/j.hpj.2016.10.001.
  • Chen, Q., Westfall, C.S., Hicks, L.M., Wang, S., Jez, J.M., 2010. Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J. Biol. Chem. 285, 29780-29786. https://doi.org/10.1074/jbc.M110.146431.
  • Chiu, L.W., Heckert, M.J., You, Y., Albanese, N., Fenwick, T., Siehl, D.L., Castle, L.A., Tao, Y., 2018. Members of the GH3 family of proteins conjugate 2,4-D and dicamba with aspartate and glutamate. Plant Cell Physiol. 59, 2366-2380. https://doi.org/ 10.1093/pcp/pcy160.
  • Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., Klessig, D.F., 2011. Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9, e0156. https://doi.org/10.1199/ tab.0156.
  • Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., Wang, S., 2008. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20, 228-240. https://doi.org/10.1105/tpc.107.055657.
  • Dixon, D.P., Edwards, R., 2009. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J. Biol. Chem. 284, 21249-21256. https://doi.org/10.1074/jbc.M109.020107.
  • Domingo, C., Andr´es, F., Tharreau, D., Iglesias, D.J., Talon ´, M., 2009. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol. Plant Microbe Interact. 22, 201-210. https://doi.org/10.1094/MPMI-22-2-0201.
  • Dong, C.J., Liu, X.Y., Xie, L.L., Wang, L.L., Shang, Q.M., 2020. Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. Planta 252, 75. https://doi.org/10.1007/ s00425-020-03467-2.
  • Du, H., Wu, N., Fu, J., Wang, S., Li, X., Xiao, J., Xiong, L., 2012. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63, 6467-6480. https://doi.org/10.1093/jxb/ ers300.
  • Feng, S., Yue, R., Tao, S., Yang, Y., Zhang, L., Xu, M., Wang, H., Shen, C., 2015. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J. Integr. Plant Biol. 57, 783-795. https:// doi.org/10.1111/jipb.12327.
  • Fu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., Wang, S., 2011. Manipulating broadspectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 155, 589-602. https://doi.org/10.1104/pp.110.163774.
  • Gonz´alez-Lamothe, R., El Oirdi, M., Brisson, N., Bouarab, K., 2012. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 24, 762-777. https://doi.org/10.1105/tpc.111.095190.
  • Gulick, A.M., 2009. Conformational dynamics in the acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem. Biol. 4, 811-827. https://doi.org/10.1021/cb900156h.
  • Guranowski, A., Miersch, O., Staswick, P.E., Suza, W., Wasternack, C., 2007. Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1). FEBS Lett. 581, 815-820. https://doi.org/10.1016/j. febslet.2007.01.049.
  • Hagen, G., Kleinschmidt, A., Guilfoyle, T., 1984. Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162, 147-153. https://doi.org/10.1007/BF00410211.
  • Hagen, G., Guilfoyle, T.J., 1985. Rapid induction of selective transcription by auxins. Mol. Cell Biol. 5, 1197-1203. https://doi.org/10.1128/mcb.5.6.1197-1203.1985.
  • Hagen, G., Guilfoyle, T., 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49, 373-385. https://doi.org/10.1023/A: 1015207114117.
  • Holland, C.K., Westfall, C.S., Schaffer, J.E., De Santiago, A., Zubieta, C., Alvarez, S., Jez, J.M., 2019. Brassicaceae-specific Gretchen Hagen 3 acyl acid amido synthetases conjugate amino acids to chorismate, a precursor of aromatic amino acids and salicylic acid. J. Biol. Chem. 294, 16855-16864. https://doi.org/10.1074/jbc. RA119.009949.
  • Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., Deng, X.W., 2000. FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14, 1958-1970. https://doi.org/10.1101/gad.14.15.1958.
  • Hui, S., Hao, M., Liu, H., Xiao, J., Li, X., Yuan, M., Wang, S., 2019. The group I GH3 family genes encoding Ja-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochem. Biophys. Res. Commun. 508, 1062-1066. https://doi.org/10.1016/j.bbrc.2018.12.057.
  • Jagadeeswaran, G., Raina, S., Acharya, B.R., Maqbool, S.B., Mosher, S.L., Appel, H.M., Schultz, J.C., Klessig, D.F., Raina, R., 2007. Arabidopsis GH3-like defense gene 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Plant J. 51, 234-246. https://doi.org/10.1111/ j.1365-313X.2007.03130.x.
  • Jahn, L., Mucha, S., Bergmann, S., Horn, C., Staswick, P., Steffens, B., Siemens, J., Ludwig-Muller, J., 2013. The clubroot pathogen (Plasmodiophora brassicae) influences auxin signaling to regulate auxin homeostasis in Arabidopsis. Plants 2, 726-749. https://doi.org/10.3390/plants2040726.
  • Jain, M., Kaur, N., Tyagi, A.K., Khurana, J.P., 2006. The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct. Integr. Genom. 6, 36-46. https://doi.org/ 10.1007/s10142-005-0142-5.
  • Jain, M., Khurana, J.P., 2009. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 276, 3148-3162. https://doi.org/10.1111/j.1742-4658.2009.07033.x.
  • Jiang, W., Yin, J., Zhang, H., He, Y., Shuai, S., Chen, S., Cao, S., Li, W., Ma, D., Chen, H., 2020. Genome-wide identification, characterization analysis and expression profiling of auxin-responsive GH3 family genes in wheat (Triticum aestivum L.). Mol. Biol. Rep. 47, 3885-3907. https://doi.org/10.1007/s11033-020-05477-5.
  • Kang, J.H., Wang, L., Giri, A., Baldwin, I.T., 2006. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18, 3303-3320. https://doi.org/10.1105/ tpc.106.041103.
  • Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., Howe, G.A., 2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. U.S.A. 105, 7100-7105. https://doi.org/10.1073/ pnas.0802332105.
  • Khan, M.I., Fatma, M., Per, T.S., Anjum, N.A., Khan, N.A., 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6, 462. https://doi.org/10.3389/fpls.2015.00462.
  • Khan, S., Stone, J.M., 2007. Arabidopsis thaliana GH3.9 influences primary root growth. Planta 226, 21-34. https://doi.org/10.1007/s00425-006-0462-2.
  • Kumar, R., Agarwal, P., Tyagi, A.K., Sharma, A.K., 2012. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol. Genet. Genom. 287, 221-235. https://doi.org/10.1007/s00438-011-0672-6.
  • Liao, D., Chen, X., Chen, A., Wang, H., Liu, J., Liu, J., Gu, M., Sun, S., Xu, G., 2015. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Plant Cell Physiol. 56, 674-687. https://doi.org/10.1093/pcp/pcu212.
  • Liu, K., Kang, B.C., Jiang, H., Moore, S.L., Li, H., Watkins, C.B., Setter, T.L., Jahn, M.M., 2005. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Mol. Biol. 58, 447-464. https://doi.org/10.1007/ s11103-005-6505-4.
  • Sandberg, G., 2002. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 50, 309-332. https:// doi.org/10.1023/A:1016024017872.
  • Ludwig Muller, J., Julke, S., Bierfreund, N.M., Decker, E.L., Reski, R., 2009. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol. 181, 323-338. https://doi.org/10.1111/j.1469-8137.2008.02677.x.
  • Ludwig-Muller, J., 2011. Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot. 62, 1757-1773. https://doi.org/10.1093/jxb/ erq412.
  • Mackelprang, R., Okrent, R.A., Wildermuth, M.C., 2017. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. Phytochemistry 143, 19-28. https://doi.org/10.1016/j.phytochem.2017.07.001.
  • Mittag, J., ˇSola, I., Rusak, G., Ludwig-Muller, J., 2015. Physcomitrella patens auxin conjugate synthetase (GH3) double knockout mutants are more resistant to Pythium infection than wild type. J. Plant Physiol. 183, 75-83. https://doi.org/10.1016/j. jplph.2015.05.015.
  • Nakazawa, M., Yabe, N., Ichikawa, T., Yamamoto, Y.Y., Yoshizumi, T., Hasunuma, K., Matsui, M., 2001. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 25, 213-221. https://doi.org/ 10.1111/j.1365-313X.2001.00957.x.
  • Nobuta, K., Okrent, R.A., Stoutemyer, M., Rodibaugh, N., Kempema, L., Wildermuth, M. C., Innes, R.W., 2007. The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol. 144, 1144-1156. https://doi.org/10.1104/pp.107.097691.
  • Okrent, R.A., Brooks, M.D., Wildermuth, M.C., 2009. Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. J. Biol. Chem. 284, 9742-9754. https://doi.org/10.1074/jbc.M806662200.
  • Okrent, R.A., Wildermuth, M.C., 2011. Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant Mol. Biol. 76, 489-505. https://doi.org/10.1007/s11103- 011-9776-y.
  • Ostrowski, M., Jakubowska, A., 2013. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides. J. Plant Physiol. 170, 361-368. https://doi.org/10.1016/j. jplph.2012.10.016.
  • Ostrowski, M., Swidzi ´nski ´, M., Ciarkowska, A., Jakubowska, A., 2014. IAAamidosynthetase activity and GH3 expression during development of pea seedlings. Acta Physiol. Plant. 36, 3029-3037. https://doi.org/10.1007/s11738-014-1673-y.
  • Ostrowski, M., Mierek-Adamska, A., Porowinska, D., Goc, A., Jakubowska, A., 2016a. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea. Plant Physiol. Biochem. 107, 9-20. https://doi.org/ 10.1016/j.plaphy.2016.05.031.
  • Ostrowski, M., Ciarkowska, A., Jakubowska, A., 2016b. The auxin conjugate indole-3- acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. J. Plant Physiol. 191, 63-72. https://doi.org/10.1016/j.jplph.2015.11.012.
  • Park, J.E., Park, J.Y., Kim, Y.S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.Y., Kim, J., Lee, Y. H., Park, C.M., 2007a. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 282, 10036-10046. https://doi.org/10.1074/jbc.M610524200.
  • Park, J.E., Seo, P.J., Lee, A.K., Jung, J.H., Kim, Y.S., Park, C.M., 2007b. An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome Bregulated light signals in hypocotyl growth. Plant Cell Physiol. 48, 1236-1241. https://doi.org/10.1093/pcp/pcm086.
  • Peat, T.S., Bottcher ¨, C., Newman, J., Lucent, D., Cowieson, N., Davies, C., 2012. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell 24, 4525-4538. https://doi.org/10.1105/ tpc.112.102921.
  • Piotrowska, A., Bajguz, A., 2011. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72, 2097-2112. https://doi.org/ 10.1016/j.phytochem.2011.08.012.
  • Reddy, S.M., Hitchin, S., Melayah, D., Pandey, A.K., Raffier, C., Henderson, J., Marmeisse, R., Gay, G., 2006. The auxin-inducible GH3 homologue Pp-GH3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment. New Phytol. 170, 391-400. https://doi.org/10.1111/j.1469- 8137.2006.01677.x.
  • Rekhter, D., Ludke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipta, V., Wiermer, M., Zhang, Y., Feussner, I., 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365, 498-502. https://doi.org/10.1126/science. aaw1720.
  • Round, A., Brown, E., Marcellin, R., Kapp, U., Westfall, C.S., Jez, J.M., Zubieta, C., 2013. Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallogr. D Biol. Crystallogr. 69, 2072-2080. https://doi.org/10.1107/S0907444913019276.
  • Roux, C., Perrot-Rechenmann, C., 1997. Isolation by differential display and characterization of a tobacco auxin-responsive cDNA Nt-gh3, related to GH3. FEBS Lett. 419, 131-136. https://doi.org/10.1016/S0014-5793(97)01447-6.
  • Santner, A., Estelle, M., 2009. Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071-1078. https://doi.org/10.1038/nature08122.
  • Sauer, M., Robert, S., Kleine-Vehn, J., 2013. Auxin: simply complicated. J. Exp. Bot. 64, 2565-2577. https://doi.org/10.1093/jxb/ert139.
  • Schuman, M.C., Meldau, S., Gaquerel, E., Diezel, C., McGale, E., Greenfield, S., Baldwin, I.T., 2018. The active jasmonate JA-Ile regulates a specific subset of plant jasmonate-mediated resistance to herbivores in nature. Front. Plant Sci. 9, 787. https://doi.org/10.3389/fpls.2018.00787.
  • Sherp, A.M., Lee, S.G., Schraft, E., Jez, J.M., 2018a. Modification of auxinic phenoxyalkanoic acid herbicides by the acyl acid amido synthetase GH3.15 from Arabidopsis. J. Biol. Chem. 293, 17731-17738. https://doi.org/10.1074/jbc. RA118.004975.
  • Sherp, A.M., Westfall, C.S., Alvarez, S., Jez, J.M., 2018b. Arabidposis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J. Biol. Chem. 293, 4277-4288. https://doi.org/ 10.1074/jbc.RA118.002006.
  • Singh, V.K., Jain, M., Garg, R., 2015. Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes. Front. Plant Sci. 5, 789. https://doi.org/10.3389/fpls.2014.00789.
  • Staswick, P.E., Tiryaki, I., Rowe, M.L., 2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405-1415. https://doi.org/10.1105/tpc.000885.
  • Staswick, P.E., Tiryaki, I., 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117-2127. https://doi.org/10.1105/tpc.104.023549.
  • Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., Suza, W., 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616-627. https://doi.org/ 10.1105/tpc.104.026690.
  • Suza, W.P., Rowe, M.L., Hamberg, M., Staswick, P.E., 2010. A tomato enzyme synthesizes (+)-7-iso -jasmonyl-L-isoleucine in wounded leaves. Planta 231, 717-728. https://doi.org/10.1007/s00425-009-1080-6.
  • Suza, W.P., Staswick, P.E., 2008. The role of JAR1 in Jasmonyl-L-isoleucine production during Arabidopsis wound response. Planta 227, 1221-1232. https://doi.org/ 10.1007/s00425-008-0694-4.
  • Takase, T., Nakazawa, M., Ishikawa, A., Manabe, K., Matsui, M., 2003. DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol. 44, 1071-1080. https://doi.org/10.1093/ pcp/pcg130.
  • Takase, T., Nakazawa, M., Ishikawa, A., Kawashima, M., Ichikawa, T., Takahashi, N., Shimada, H., Manabe, K., Matsui, M., 2004. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J. 37, 471-483. https://doi.org/10.1046/j.1365-313X.2003.01973.x.
  • Terol, J., Domingo, C., Talόn, M., 2006. The GH3 family in plants: genome wide analysis in plants and evolutionary history based on EST analysis. Gene 371, 279-290. https://doi.org/10.1016/j.gene.2005.12.014.
  • Torrens-Spence, M.P., Bobokalonova, A., Carballo, V., Glinkerman, C.M., Pluskal, T., Shen, A., Weng, J.K., 2019. PBS and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol. Plant 12, 1577-1586. https://doi.org/10.1016/j. molp.2019.11.005.
  • Ueda, M., Bandurski, R.S., 1974. Structure of indole-3-acetic acid myoinositol esters and pentamethyl-myoinositols. Phytochemistry 13, 243-253. https://doi.org/10.1016/ S0031-9422(00)91303-7.
  • Ulmasov, T., Hagen, G., Guilfoyle, T.J., 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865-1868. https://doi.org/10.1126/ science.276.5320.1865.
  • Vielba, J.M., 2019. Identification and initial characterization of a new subgroup in the GH3 gene family in woody plants. J. Plant Biochem. Biotechnol. 28, 280-290. https://doi.org/10.1007/s13562-018-0477-3.
  • Wakuta, S., Suzuki, E., Saburi, W., Matsuura, H., Nabeta, K., Imai, R., Matsui, H., 2011. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling. Biochem. Biophys. Res. Commun. 409, 634-639. https://doi.org/10.1016/j.bbrc.2011.05.055.
  • Wang, L., Halitschke, R., Kang, J.H., Berg, A., Harnisch, F., Baldwin, I.T., 2007. Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226, 159-167. https://doi.org/ 10.1007/s00425-007-0477-3.
  • Wang, S., Bai, Y., Shen, C., Wu, Y., Zhang, S., Jiang, D., Guilfoyle, T.J., Chen, M., Qi, Y., 2010. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct. Integr. Genom. 10, 533-546. https://doi.org/10.1007/s10142-010-0174-3.
  • Wang, J.G., Chen, C.H., Chien, C.T., Hsieh, H.L., 2011. FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiol. 156, 631-646. https://doi.org/10.1104/pp.111.177667.
  • Wang, M.Y., Liu, X.T., Chen, Y., Xu, X.J., Yu, B., Zhang, S.Q., Li, Q., He, Z.H., 2012. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. J. Integr. Plant Biol. 54, 471-485. https://doi.org/ 10.1111/j.1744-7909.2012.01131.x.
  • Wen, N., Chu, Z., Wang, S., 2003. Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol. Genet. Genom. 269, 331-339. https://doi.org/10.1007/s00438-003-0839-x.
  • Westfall, C.S., Zubieta, C., Herrmann, J., Kapp, U., Nanao, M.H., Jez, J.M., 2012. Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336, 1708-1711. https://doi.org/10.1126/science.1221863.
  • Westfall, C.S., Sherp, A.M., Zubieta, C., Alvarez, S., Schraft, E., Marcellin, R., Ramirez, L., Jez, J.M., 2016. Arabidposis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc. Natl. Acad. Sci. U. S.A. 113, 13917-13922. https://doi.org/10.1073/pnas.1612635113.
  • Wright, R.M., Hagen, G., Guilfoyle, T., 1987. An auxin-induced polypeptide in dicotyledonous plants. Plant Mol. Biol. 9, 625-634. https://doi.org/10.1007/ BF00020538.
  • Xu, G., Zhang, Y., Li, M., Jiao, X., Zhou, L., Ming, Z., 2021. Crystal structure of the acyl acid amido synthetase GH3-8 from Oryza sativa. Biochem. Biophys. Res. Commun. 534, 266-271. https://doi.org/10.1016/j.bbrc.2020.11.098.
  • Yadav, S.R., Khanday, I., Majhi, B.B., Veluthambi, K., Vijayraghavan, U., 2011. Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. Plant Cell Physiol. 52, 2123-2135. https://doi.org/ 10.1093/pcp/pcr142.
  • Yang, Y., Yue, R., Sun, T., Zhang, L., Chen, W., Zeng, H., Wang, H., Shen, C., 2015. Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under-stress related hormones and Sinorhizobium meliloti infection. Appl. Microbiol. Biotechnol. 99, 841-854. https://doi.org/10.1007/s00253-014-6311-5.
  • Yu, D., Qanmber, G., Lu, L., Wang, L., Li, J., Yang, Z., Liu, Z., Li, Y., Chen, Q., Mendu, V., Li, F., Yang, Z., 2018. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC Plant Biol. 18, 350. https://doi.org/10.1186/s12870-018-1545-5.
  • Yuan, H., Zhao, K., Lei, H., Shen, X., Liu, Y., Liao, X., Li, T., 2013. Genome-wide analysis of the GH3 family in apple (Malus x domestica). BMC Genom. 14, 297. https://doi. org/10.1186/1471-2164-14-297.
  • Zhang, Z., Li, Q., Li, Z., Staswick, P.E., Wang, M., Zhu, Y., He, Z., 2007. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis- Pseudomonas syringae interaction. Plant Physiol. 145, 450-464. https://doi.org/10.1104/ pp.107.106021.
  • Zhang, Z., Wang, M., Li, Z., Li, Q., He, Z., 2008. Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signal. Behav. 3, 537-542. https://doi.org/10.4161/psb.3.8.5748.
  • Zhang, S.W., Li, C.H., Cao, J., Zhang, Y.C., Zhang, S.Q., Xia, Y.F., Sun, D.Y., Sun, Y., 2009. Altered architecture and enhanced drought tolerance in rice via the downregulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol. 151, 1889-1901. https://doi.org/10.1104/pp.109.146803.
  • Zhao, D., Wang, Y., Feng, C., Wei, Y., Peng, X., Guo, X., Guo, X., Zhai, Z., Li, J., Shen, X., Li, T., 2020. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. Plant J. 103, 166-183. https://doi.org/10.1111/tpj.14717.
  • Zheng, Z., Guo, Y., Nov´ak, O., Chen, W., Ljung, K., Noel, J.P., Chory, J., 2016. Local auxin metabolism regulates environment-induced hypocotyl elongation. Native Plants 2, 16025. https://doi.org/10.1038/nplants.2016.25.
  • Zou, X., Long, J., Zhao, K., Peng, A., Chen, M., Long, Q., He, Y., Chen, S., 2019. Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). PLoS One 14, e0220017. https://doi.org/10.1371/journal.pone.0220017.