Published August 10, 2023 | Version v1
Journal article Open

Isolation of Mycosporine-like Amino Acids from Red Macroalgae and a Marine Lichen by High-Performance Countercurrent Chromatography: A Strategy to Obtain Biological UV-Filters

  • 1. Centro Experimental Grice Hutchinson, Lomas de San Julián, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 2, 29004 Málaga, Spain
  • 2. Laboratory of Algal Biotechnology—Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
  • 3. Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Málaga, Spain

Description

Marine organisms have gained considerable biotechnological interest in recent years due to their wide variety of bioactive compounds with potential applications. Mycosporine-like amino acids (MAAs) are UV-absorbing secondary metabolites with antioxidant and photoprotective capacity, mainly found in organisms living under stress conditions (e.g., cyanobacteria, red algae, or lichens). In this work, five MAAs were isolated from two red macroalgae (Pyropia columbina and Gelidium corneum) and one marine lichen (Lichina pygmaea) by high-performance countercurrent chromatography (HPCCC). The selected biphasic solvent system consisted of ethanol, acetonitrile, saturated ammonium sulphate solution, and water (1:1:0.5:1; v:v:v:v). The HPCCC process for P. columbina and G. corneum consisted of eight separation cycles (1 g and 200 mg of extract per cycle, respectively), whereas three cycles were performed for of L. pygmaea (1.2 g extract per cycle). The separation process resulted in fractions enriched with palythine (2.3 mg), asterina-330 (3.3 mg), shinorine (14.8 mg), porphyra-334 (203.5 mg) and mycosporine-serinol (46.6 mg), which were subsequently desalted by using precipitation with methanol and permeation on a Sephadex G-10 column. Target molecules were identified by HPLC, MS, and NMR.

Files

marinedrugs-21-00357.pdf

Files (3.3 MB)

Name Size Download all
md5:2fd65b6c13d40e8024fbb342b77ee3e7
3.3 MB Preview Download