Published February 28, 2023
| Version v1
Journal article
Restricted
Coumaronochromones, flavanones, and isoflavones from the twigs and leaves of Erythrina subumbrans inhibit PTP1B and nitric oxide production
Creators
- 1. * & School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
Description
Liu, Cai-Ying, Deng, Pan, Wang, Bin, Liu, Ai-Hong, Wang, Meng-Ge, Li, Song-Wei, Chen, Li-Li, Mao, Shui-Chun (2023): Coumaronochromones, flavanones, and isoflavones from the twigs and leaves of Erythrina subumbrans inhibit PTP1B and nitric oxide production. Phytochemistry (113550) 206: 1-12, DOI: 10.1016/j.phytochem.2022.113550, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113550
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:3529FFE7FFEBFFFCFFF8BB14FF947101
References
- Agranat, I., Caner, H., Caldwell, J., 2002. Putting chirality to work: the strategy of chiral switches. Nat. Rev. Drug Discov. 1, 753-768. https://doi.org/10.1038/nrd915.
- Assumpcao, R.M.V., Gottlieb, O.R., 1973. Chemistry of Brazilian leguminosae. XLI. Flavonoids from Poecilanthe parviflora. Phytochemistry 12, 1188-1191. https://doi. org/10.1016/0031-9422(73)85049-6.
- Bohlmann, F., Abraham, W.R., 1979. New prenylated flavanones from Helichrysum hypocephalum. Phytochemistry 18, 1851-1853. https://doi.org/10.1016/0031-9422 (79)83068-x.
- Cano-Flores, A., Espinoza, M., Delgado, G., 2022. Bio- and chemo- transformations of glabranin and 7-O-methylglabranin and cytotoxic evaluations of the transformed products. Nat. Prod. Res. 36, 3404-3412. https://doi.org/10.1080/ 14786419.2020.1862835.
- Chen, R., Liu, X., Zou, J., Yin, Y., Ou, B., Li, J., Wang, R., Xie, D., Zhang, P., Dai, J., 2013. Regio- and stereospecific prenylation of flavonoids by Sophora flavescens prenyltransferase. Adv. Synth. Catal. 355, 1817-1828. https://doi.org/10.1002/ adsc.201300196.
- Fan, J.R., Kuang, Y., Dong, Z.Y., Yi, Y., Zhou, Y.X., Li, B., Qiao, X., Ye, M., 2020. Prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis as PTP1B and α- glucosidase inhibitors. J. Nat. Prod. (Lloydia) 83, 814-824. https://doi. org/10.1021/acs.jnatprod.9b00262.
- Feldhammer, M., Uetani, N., Miranda-Saavedra, D., Tremblay, M.L., 2013. PTP1B: a simple enzyme for a complex world. Crit. Rev. Biochem. Mol. Biol. 48, 430-445. https://doi.org/10.3109/10409238.2013.819830.
- Feng, T., Wang, R.R., Cai, X.H., Zheng, Y.T., Luo, X.D., 2010. Anti-human immunodeficiency virus-1 constituents of the bark of Poncirus trifoliata. Chem. Pharm. Bull. (Tokyo) 58, 971-975. https://doi.org/10.1248/cpb.58.971.
- Fukai, T., Wang, Q.H., Takayama, M., Nomura, T., 1990. Structures of five new prenylated flavonoids, gancaonins L, M, N, O, and P from aerial parts of Glycyrrhiza uralensis. Heterocycles 31, 373-382. https://doi.org/10.3987/COM-89-5260.
- Fukui, H., Egawa, H., Koshimizu, K., Mitsui, T., 1973. New isoflavone with antifungal activity from immature fruits of Lupinus luteus. Agric. Biol. Chem. 37, 417-421. https://doi.org/10.1080/00021369.1973.10860665.
- Gaffield, W., 1970. Circular dichroism, optical rotatory dispersion, and absolute configuration of flavanones, 3-hydroxyflavanones, and their glycosides. Determination of aglycone chirality in flavanone glycosides. Tetrahedron 26, 4093-4108. https://doi.org/10.1016/s0040-4020(01)93050-9.
- Ganesh, S., Vijey, A.M., 2020b. Anthelmintic and antioxidant activity of aqueous ethanolic extract of Erythrina subumbrans (Hassk.) Merr. Int. J. Res. Pharm. Sci. 11, 2549-2555. https://doi.org/10.26452/ijrps.v11ispl4.4511.
- Ganesh, S., Vijey, A.M., 2020a. Erythrina subumbrans (hassk) Merr: an overview. Int. J. Res. Pharm. Sci. 11, 980-986. https://doi.org/10.26452/ijrps.v11ispl4.4232.
- Ganesh, S., Vijey, A.M., 2020c. Anti-diabetic activity of Erythrina subumbrans (hassk.) Merr. Int. J. Res. Pharm. Sci. 11, 1826-1831. https://doi.org/10.26452/ijrps. v11ispl4.4385.
- Ganesh, S., Vijey, A.M., 2021. In-vitro cytotoxic activity of Papaverine compound isolated from aqueous ethanolic leaf extract of Erythrina subumbrans (Hassk.) Merr. Int. J. Res. Pharm. Sci. 12, 1396-1403. https://doi.org/10.26452/ijrps.v12i2.4698.
- Garzon-Porras, A.M., Bertuzzi, D.L., Lucas, K., da Silva, L.C.E., de Oliveira, M.G., Ornelas, C., 2020. Nitric oxide releasing polyamide dendrimer with antiinflammatory activity. ACS Appl. Polym. Mater. 2, 2027-2034. https://doi.org/ 10.1021/acsapm.0c00203.
- Gupta, R.K., Krishnamurti, M., 1976. Prenylated flavanones from Millettia ovalifolia seeds. Phytochemistry 15, 832-833. https://doi.org/10.1016/S0031-9422(00) 94470-4.
- Halpin, R.A., El-Naggar, S.F., McCombe, K.M., Vyas, K.P., Boyd, D.R., Jerina, D.M., 1982. Resolution and assignment of absolute configuration to the (+)- and (-)-cis and trans 3,4-diol metabolites of the anti-juvenile hormone precocene I. Tetrahedron Lett. 23, 1655-1658. https://doi.org/10.1016/s0040-4039(00)87182-8.
- Hashidoko, Y., Tahara, S., Mizutani, J., 1986. Isoflavonoids of yellow lupine. Part I. New complex isoflavones in the root of yellow lupine (Lupinus luteus L., cv. Barpine). Agric. Biol. Chem. 50, 1797-1807. https://doi.org/10.1080/ 00021369.1986.10867638.
- Hobbs, A.J., Higgs, A., Moncada, S., 1999. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191-220. https:// doi.org/10.1146/annurev.pharmtox.39.1.191.
- Hotta, M., Sakatani, T., Ishino, K., Wada, R., Kudo, M., Yokoyama, Y., Yamada, T., Yoshida, H., Naito, Z., 2019. Farnesoid X receptor induces cell death and sensitizes to TRAIL-induced inhibition of growth in colorectal cancer cells through the upregulation of death receptor 5. Biochem. Biophys. Res. Commun. 519, 824-831. https://doi.org/10.1016/j.bbrc.2019.09.033.
- Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., Chaudhuri, G., 1987. Endotheliumderived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 84, 9265-9269. https://doi.org/10.1073/ pnas.84.24.9265.
- Ingham, J.L., Tahara, S., Dziedzic, S.Z., 1986. New 3-hydroxyflavanone (dihydroflavonol) phytoalexins from the papilionate legume Shuteria vestita. J. Nat. Prod. (Lloydia) 49, 631-638. https://doi.org/10.1021/np50046a012.
- Jang, J., Na, M., Thuong, P.T., Njamen, D., Mbafor, J.T., Fomum, Z.T., Woo, E.-R., Oh, W. K., 2008. Prenylated flavonoids with PTP1B inhibitory activity from the root bark of Erythrina mildbraedii. Chem. Pharm. Bull. (Tokyo) 56, 85-88. https://doi.org/ 10.1248/cpb.56.85.
- Lane, G.A., Newman, R.H., 1986. Isoflavones from Lupinus angustifolius root. Phytochemistry 26, 295-300. https://doi.org/10.1016/s0031-9422(00)81531-9.
- Li, K., Ji, S., Song, W., Kuang, Y., Lin, Y., Tang, S., Cui, Z., Qiao, X., Yu, S., Ye, M., 2017. Glycybridins A-K, bioactive phenolic compounds from Glycyrrhiza glabra. J. Nat. Prod. (Lloydia) 80, 334-346. https://doi.org/10.1021/acs.jnatprod.6b00783.
- Minakawa, T., Toume, K., Ahmed, F., Sadhu, S.K., Ohtsuki, T., Arai, M.A., Ishibashi, M., 2010. Constituents of Pongamia pinnata isolated in a screening for activity to overcome tumor necrosis factor-related apoptosis-inducing ligand-resistance. Chem. Pharm. Bull. (Tokyo) 58, 1549-1551. https://doi.org/10.1248/cpb.58.1549.
- Mitscher, L.A., Drake, S., Gollapudi, S.R., Okwute, S.K., 1987. A modern look at folkloric use of anti-infective agents. J. Nat. Prod. (Lloydia) 50, 1025-1040. https://doi.org/ 10.1021/np50054a003.
- Mitscher, L.A., Rao, G.S.R., Khanna, I., Veysoglu, T., Drake, S., 1983. Antimicrobial agents from higher plants: prenylated flavonoids and other phenols from Glycyrrhiza lepidota. Phytochemistry 22, 573-576. https://doi.org/10.1016/0031-9422(83) 83049-0.
- Na, M., Hoang, D.M., Njamen, D., Mbafor, J.T., Fomum, Z.T., Thuong, P.T., Ahn, J.S., Oh, W.K., 2007. Inhibitory effect of 2-arylbenzofurans from Erythrina addisoniae on protein tyrosine phosphatase-1B. Bioorg. Med. Chem. Lett. 17, 3868-3871. https:// doi.org/10.1016/j.bmcl.2007.05.005.
- Parsons, I.C., Gray, A.I., Waterman, P.G., Hartley, T.G., 1993. New triterpenes and flavonoids from the leaves of Bosistoa brassii. J. Nat. Prod. (Lloydia) 56, 46-53. https://doi.org/10.1021/np50091a007.
- Qu, K.J., Wang, B., Jiang, C.S., Xie, B.G., Liu, A.H., Li, S.W., Guo, Y.W., Li, J., Mao, S.C., 2021. Rearranged Diels-Alder adducts and prenylated flavonoids as potential PTP1B inhibitors from Morus nigra. J. Nat. Prod. (Lloydia) 84, 2303-2311. https://doi.org/ 10.1021/acs.jnatprod.1c00403.
- Raksat, A., Maneerat, W., Rujanapun, N., Andersen, R.J., Pyne, S.G., Laphookhieo, S., 2019. Antibacterial and inhibitory activities against nitric oxide production of coumaronochromones and prenylated isoflavones from Millettia extensa. J. Nat. Prod. (Lloydia) 82, 2343-2348. https://doi.org/10.1021/acs.jnatprod.9b00216.
- Rukachaisirikul, T., Innok, P., Aroonrerk, N., Boonamnuaylap, W., Limrangsun, S., Boonyon, C., Woonjina, U., Suksamrarn, A., 2007a. Antibacterial pterocarpans from Erythrina subumbrans. J. Ethnopharmacol. 110, 171-175. https://doi.org/10.1016/j. jep.2006.09.022.
- Rukachaisirikul, T., Innok, P., Suksamrarn, A., 2008. Erythrina alkaloids and a pterocarpan from the bark of Erythrina subumbrans. J. Nat. Prod. (Lloydia) 71, 156-158. https://doi.org/10.1021/np070506w.
- Rukachaisirikul, T., Saekee, A., Tharibun, C., Watkuolham, S., Suksamrarn, A., 2007b. Biological activities of the chemical constituents of Erythrina stricta and Erythrina subumbrans. Arch Pharm. Res. (Seoul) 30, 1398-1403. https://doi.org/10.1007/ bf02977363.
- Sato, H., Tahara, S., Ingham, J.L., Dziedzic, S.Z., 1995. Isoflavones from pods of Laburnum anagyroides. Phytochemistry 39, 673-676. https://doi.org/10.1016/0031- 9422(95)00029-7.
- Seo, Y.H., Jeon, J.H., Jeong, M., Ryu, S.M., Jeon, W.K., Jang, D.S., Shim, S.H., Lee, D., Choi, J.H., Lee, J., 2018. Chemical constituents of Apios americana tubers and their inhibitory activities on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Nat. Prod. (Lloydia) 81, 1598-1603. https://doi.org/ 10.1021/acs.jnatprod.8b00182.
- Singhal, A.K., Sharma, R.P., Thyagarajan, G., Herz, W., Govindan, S.V., 1980. New prenylated isoflavones and a prenylated dihydroflavonol from Millettia pachycarpa. Phytochemistry 19, 929-934. https://doi.org/10.1016/0031-9422(80)85140-5.
- Stewart, M., Bartholomew, B., Currie, F., Abbiw, D.K., Latif, Z., Sarker, S.D., Nash, R.J., 2000. Pyranoisoflavones from Rinorea welwitschii. Fitoterapia 71, 595-597. https:// doi.org/10.1016/s0367-326x(00)00210-0.
- Sun, P., Jiang, C.S., Zhang, Y., Liu, A.H., Liang, T.J., Li, J., Guo, Y.W., Jiang, J.M., Mao, S. C., Wang, B., 2017. Aglaiabbrevins A-D, new prenylated bibenzyls from the leaves of Aglaia abbreviata with potent PTP1B inhibitory activity. Chem. Pharm. Bull. (Tokyo) 65, 295-299. https://doi.org/10.1248/cpb.c16-00868.
- Tahara, S., Ingham, J.L., Mizutani, J., 1987. Stereochemical studies on dihydrofuranoisoflavones. Agric. Biol. Chem. 51, 211-216. https://doi.org/10.1016/S0031-9422 (00)97923-8, 1987.
- Tahara, S., Moriyama, M., Orihara, S., Ingham, J.L., Kawabata, J., Mizutani, J., 1991. Naturally occurring coumaranochroman-4-ones: a new class of isoflavonoids from lupines and Jamaican dogwood. Z. Naturforsch., C: Biosci. 46, 331-340. https://doi. org/10.1515/znc-1991-5-602.
- Telikepalli, H., Gollapudi, S.R., Keshavarz-Shokri, A., Velazquez, L., Sandmann, R.A., Veliz, E.A., Rao, K.V.J., Madhavi, A.S., Mitscher, L.A., 1990. Isoflavonoids and a cinnamyl phenol from root extracts of Erythrina variegata. Phytochemistry 29, 2005-2007. https://doi.org/10.1016/0031-9422(90)85056-L.
- Tominaga, H., Ishiyama, M., Ohseto, F., Sasamoto, K., Hamamoto, T., Suzuki, K., Watanabe, M., 1999. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 36, 47-50. https://doi.org/10.1039/a809656b.
- Won, T.H., Song, I.H., Kim, K.H., Yang, W.Y., Lee, S.K., Oh, D.C., Oh, W.K., Oh, K.B., Shin, J., 2015. Bioactive metabolites from the fruits of Psoralea corylifolia. J. Nat. Prod. (Lloydia) 78, 666-673. https://doi.org/10.1021/np500834d.
- Woodward, M.D., 1979. Studies on phytoalexins. Part 18. New isoflavonoids related to kievitone from Phaseolus vulgaris. Phytochemistry 18, 2007-2010. https://doi.org/ 10.1016/s0031-9422(00)82721-1.
- Yao, J., Qin, Q., Wang, Y., Zeng, J., Xu, J., He, X., 2022. Anti-neuroinflammatory 3- hydroxycoumaronochromones and isoflavanones enantiomers from the fruits of Ficus altissima Blume. Phytochemistry 202, 113313. https://doi.org/10.1016/j. phytochem.2022.113313.