Published February 28, 2023
| Version v1
Journal article
Restricted
Guide isolation of guaiane-type sesquiterpenoids from Daphne tangutica maxim. And their anti-inflammatory activities
Description
Guo, Rui, Duan, Zhi-Kang, Li, Qian, Yao, Guo-Dong, Song, Shao-Jiang, Huang, Xiao-Xiao (2023): Guide isolation of guaiane-type sesquiterpenoids from Daphne tangutica maxim. And their anti-inflammatory activities. Phytochemistry (113523) 206: 1-11, DOI: 10.1016/j.phytochem.2022.113523, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113523
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFAEFFF8FFA9B9384127FFC4FF9CDB2F
References
- Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., 2013. Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford, CT.
- Gao, J., Aisa, H.A., 2017. Terpenoids from Euphorbia soongarica and Their multidrug resistance reversal activity. J. Nat. Prod. 80, 1767-1775. https://doi.org/10.1021/ acs.jnatprod.6b01099.
- Guo, R., Ren, Q., Tang, Y.-X., Zhao, F., Lin, B., Huang, X.-X., Song, S-j, 2020. Sesquiterpenoids from the roots of Daphne genkwa Siebold et Zucc. With potential anti-inflammatory activity. Phytochemistry 174, 112348. https://doi.org/10.1016/j. phytochem.2020.112348.
- Guo, R., Zhao, P., Yu, X., Yao, G., Lin, B., Huang, X., Song, S., 2021. (± )-Pinnatifidaones A-D, four pairs of highly modified neolignan enantiomers with a rare spirocyclohexenone skeleton from Crataegus pinnatifida. Org. Chem. Front. 8, 953-960. https://doi.org/10.1039/d0qo01475c.
- He, M., Zhou, Y., 2021. How to identify "Material basis-Quality markers" more accurately in Chinese herbal medicines from modern chromatography-mass spectrometry data-sets: opportunities and challenges of chemometric tools. Chin. Herb. Med. 13, 2-16. https://doi.org/10.1016/j.chmed.2020.05.006.
- Huang, S.Z., Li, X.N., Ma, Q.Y., Dai, H.F., Li, L.C., Cai, X.H., Liu, Y.Q., Zhou, J., Zhao, Y. X., 2014. Daphnauranols A-C, new antifeedant sesquiterpenoids with a 5/6/7 ring system from Daphne aurantiaca. Tetrahedron Lett. 55, 3693-3696. https://doi.org/ 10.1016/j.tetlet.2014.05.007.
- Huang, S.Z., Zhang, X., Ma, Q.Y., Zheng, Y.T., Dai, H.F., Wang, Q., Zhou, J., Zhao, Y.X., 2015. Anti-HIV terpenoids from Daphne aurantiaca Diels. stems. RSC Adv. 5, 80254-80263. https://doi.org/10.1039/c5ra17099k.
- Huang, S.Z., Ma, Q.Y., Kong, F.D., Guo, Z.K., Wang, Q., Dai, H.F., Liu, Y.Q., Zhou, J., Zhao, Y.X., 2017. Daphnauranins A and B, two new antifeedants Isolated from Daphne aurantiaca roots. Fitoterapia 122, 11-15. https://doi.org/10.1016/j. fitote.2017.08.001.
- Khushi, S., Salim, A.A., Elbanna, A.H., Nahar, L., Bernhardt, P.V., Capon, R.J., 2020. Dysidealactams and dysidealactones: sesquiterpene glycinyl-Lactams, imides, and lactones from a Dysidea sp. marine sponge collected in southern Australia. J. Nat. Prod. 83, 1577-1584. https://doi.org/10.1021/acs.jnatprod.0c00041.
- Li, Y., Yu, H.B., Zhang, Y., Leao, T., Glukhov, E., Pierce, M.L., Zhang, C., Kim, H., Mao, H. H., Fang, F., Cottrell, G.W., Murray, T.F., Gerwick, L., Guan, H., Gerwick, W.H., 2020. Pagoamide A, a cyclic depsipeptide isolated from a cultured marine chlorophyte, Derbesia sp., using MS/MS-based molecular networking. J. Nat. Prod. 83, 617-625. https://doi.org/10.1021/acs.jnatprod.9b01019.
- Liang, S., Shen, Y.H., Feng, Y., Tian, J.M., Liu, X.H., Xiong, Z., Zhang, W.D., 2010. Terpenoids from Daphne aurantiaca and their potential anti-inflammatory activity. J. Nat. Prod. 73, 532-535. https://doi.org/10.1021/np9005053.
- Lin, R.W., Tsai, I.L., Duh, C.Y., Lee, K.H., Chen, I.S., 2004. New lignans and cytotoxic constituents from Wikstroemia lanceolata. Planta Med. 70, 234-238. https://doi.org/ 10.1055/s-2004-815540.
- Liu, Z., Dong, M., Chang, H., Han, N., Yin, J., 2020. Guaiane type of sesquiterpene with NO inhibitory activity from the root of Wikstroemia indica. Bioorg. Chem. 99, 103785 https://doi.org/10.1016/j.bioorg.2020.103785.
- Ma, C.T., Eom, T., Cho, E., Wu, B., Kim, T.R., Oh, K.B., Han, S.B., Kwon, S.W., Park, J.H., 2017. Aquilanols A and B, macrocyclic humulene-type sesquiterpenoids from the agarwood of Aquilaria malaccensis. J. Nat. Prod. 80, 3043-3048. https://doi.org/ 10.1021/acs.jnatprod.7b00462.
- Ma, Q.Y., Chen, Y.C., Huang, S.Z., Guo, Z.K., Dai, H.F., Hua, Y., Zhao, Y.X., 2014. Two new guaiane sesquiterpenoids from Daphne holosericea (Diels) Hamaya. Molecules 19, 14266-14272. https://doi.org/10.3390/molecules190914266.
- Masuoka, C., One, M., Ito, Y., Okawa, M., Nohara, T., 2002. New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum. Chem. Pharm. Bull. 50, 1413-1415. https://doi.org/10.1248/cpb.50.1413.
- Mi, S.H., Zhao, P., Li, Q., Zhang, H., Guo, R., Liu, Y.-Y., Lin, B., Yao, G.D., Song, S.J., Huang, X.X., 2022. Guided isolation of daphnane-type diterpenes from Daphne genkwa by molecular network strategies. Phytochemistry 198. https://doi.org/ 10.1016/j.phytochem.2022.113144.
- Pan, L., Zhang, X.F., Deng, Y., Zhou, Y., Wang, H., Ding, L.S., 2010. Chemical constituents investigation of Daphne tangutica. Fitoterapia 81, 38-41. https://doi. org/10.1016/j.fitote.2009.07.002.
- Petras, D., Caraballo-Rodriguez, A.M., Jarmusch, A.K., Molina-Santiago, C., Gauglitz, J. M., Gentry, E.C., Belda-Ferre, P., Romero, D., Tsunoda, S.M., Dorrestein, P.C., Wang, M., 2021. Chemical proportionality within molecular networks. Anal. Chem. 93, 12833-12839. https://doi.org/10.1021/acs.analchem.1c01520.
- Qiao, L.R., Yang, L., Zou, J.H., Li, L., Sun, H., Si, Y.K., Zhang, D., Chen, X., Dai, J., 2012. Neolignans and sesquiterpenes from cell cultures of Stellera chamaejasme. Planta Med. 78, 711-719. https://doi.org/10.1055/s-0031-1298380.
- Qing, D.Y., Ming, B., Qi, Y.X., Bin, L., Xiao, H.X., Jiang, S.S., 2020. Quassinoids from the root barks of Ailanthus altissima: ssolation, configurational assignment, and cytotoxic activities. Chin. J. Chem. 39 https://doi.org/10.1002/cjoc.202000558.
- Ren, Q., Zhao, W.Y., Shi, S.C., Han, F.Y., Zhang, Y.Y., Liu, Q.B., Yao, G.D., Lin, B., Huang, X.X., Song, S.J., 2019. Guaiane-type sesquiterpenoids from the roots of Daphne genkwa and evaluation of their neuroprotective effects. J. Nat. Prod. 82, 1510-1517. https://doi.org/10.1021/acs.jnatprod.8b01049.
- Taninaka, H., Takaishi, Y., Honda, G., Imakura, Y., Sezik, E., Yesilada, E., 1999. Terpenoids and aromatic compounds from Daphe oleoides ssp. oleoides. Phytochemistry 52, 1525-1529. https://doi.org/10.1016/S0031-9422(99)00305-2.
- Wang, J., Ren, Q., Zhang, Y.-Y., Guo, R., Lin, B., Huang, X.X., Song, S.J., 2019. Assignment of the stereostructures of sesquiterpenoids from the roots of Daphne genkwa via quantum chemical calculations. Fitoterapia 138, 104352. https://doi. org/10.1016/j.fitote.2019.104352.
- Woo, S., Kang, K.B., Kim, J., Sung, S.H., 2019. Molecular networking reveals the chemical diversity of slaginellin derivatives, natural Phosphodiesterase-4 Inhibitors from Selaginella tamariscina. J. Nat. Prod. 82, 1820-1830. https://doi.org/10.1021/ acs.jnatprod.9b00049.
- Wlodzimierz, M.D., Paul, A.G., John, C.H., Apoloniusz, R., Anrzel, W., 1981. Isolation of 12-hydroxycaryophyllene-4,5-oxide, a sesquiterpene from Lactarius camphoratus. Phytochemistry 20 (12), 2733-2734. https://doi.org/10.1016/0031-9422(81) 85276-4.
- Xu, S., Wang, J.J., Wei, Y., Deng, W.W., Wan, X., Bao, G.H., Xie, Z., Ling, T.J., Ning, J., 2019. Metabolomics based on UHPLC-Orbitrap-MS and global natural product social molecular networking reveals eEffects of time scale and environment of storage on the metabolites and taste quality of raw pu-erh tea. J. Agric. Food Chem. 67, 12084-12093. https://doi.org/10.1021/acs.jafc.9b05314.
- Xu, W., Bai, M., Liu, D.F., Qin, S.Y., Lv, T.M., Li, Q., Lin, B., Song, S.J., Huang, X.X., 2022. MS/MS-based molecular networking accelerated discovery of germacrane-type sesquiterpene lactones from Elephantopus scaber L. Phytochemistry 198, 113136. https://doi.org/10.1016/j.phytochem.2022.113136.
- Yang, X., Huang, M., Zheng, S., Ma, X., Wan, D., Feng, Y., 2016. Liquid chromatography with mass spectrometry and NMR spectroscopy based discovery of cytotoxic principles from Daphne tangutica Maxim. J. Separ. Sci. 39, 2179-2187. https://doi. org/10.1002/jssc.201501340.
- Yin, Z.Y., Cheng, Y.F., Wei, J.K., Luo, X.K., Luo, P., Liu, S.N., Xu, J., Chen, H., Gu, Q., 2018. Chemical constituents from Daphne tangutica and their cytotoxicity against nasopharyngeal carcinoma cells. Fitoterapia 130, 105-111. https://doi.org/ 10.1016/j.fitote.2018.08.012.
- Zang, Y., Gong, Y., Gong, J., Liu, J., Chen, C., Gu, L., Zhou, Y., Wang, J., Zhu, H., Zhang, Y., 2020. Fungal polyketides with three distinctive ring skeletons from the fungus Penicillium canescens uncovered by OSMAC and molecular networking strategies. J. Org. Chem. 85, 4973-4980. https://doi.org/10.1021/acs.joc.0c00147.
- Zhang, W., Shen, Y.H., Lou, Z.Y., Liu, R.H., Zhang, C., Fu, P., Shan, L., Zhang, W.D., 2007. Two new flavanes and bioactive compounds from Daphne tangutica Maxim. Nat. Prod. Res. 21, 1021-1026. https://doi.org/10.1080/14786410701371603.
- Zhao, P., Li, Z.Y., Qin, S.Y., Xin, B.S., Liu, Y.Y., Lin, B., Yao, G.D., Huang, X.X., Song, S.J., 2021. Three unusual sesquiterpenes with distinctive ring skeletons from Daphne penicillata uncovered by molecular networking strategies. J. Org. Chem. 86, 15298-15306. https://doi.org/10.1021/acs.joc.1c01880.
- Zhou, J., Liu, Fj, Li, Xx, Li, P., Yang, H., Liu, Yc, Chen, Yh, Wei, Cd, Li, Hj, 2021.
- Zhuang, L.G., Seligmann, O., Wagner, H., 1983a. Daphneticin, a coumarinolignoid from Daphne tangutica. Phytochemistry 22, 617-619. https://doi.org/10.1016/0031-9422 (83)83071-4.
- Zhuang, L.G., Seligmann, O., Lotter, H., Wagner, H., 1983b. Dihydrosesamin, a lignan from Daphne tangutica. Phytochemistry 22, 265-267. https://doi.org/10.1016/ S0031-9422(00)80103-X.