Published April 30, 2023 | Version v1
Journal article Restricted

Megastigmane glycosides from Streblus ilicifolius (S.Vidal) Corner and their anti-inflammatory activity

  • 1. * & State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of & ** & Guangxi Key Laboratory of Tradtitional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning,

Description

Huang, Yan, Pan, Liwei, Chang, Yanling, Liang, Xiaoqin, Hou, Ping, Ren, Chenyang, Xu, Weifeng, Yang, Ruiyun, Li, Jun, Liu, Buming (2023): Megastigmane glycosides from Streblus ilicifolius (S.Vidal) Corner and their anti-inflammatory activity. Phytochemistry (113606) 208: 1-13, DOI: 10.1016/j.phytochem.2023.113606, URL: http://dx.doi.org/10.1016/j.phytochem.2023.113606

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:D53DFF9DFF9DD142FF85FF8BFFCBB651

References

  • Achenbach, H., Lowel, M., Waibel, R., Gupta, M., Solis, P., 1992. New lignan glucosides from Stemmadenia minima. Planta Med. 58, 270-272. https://doi.org/10.1055/s- 2006-961451.
  • Baumes, R., Wirth, J., Bureau, S., Gunata, Y., Razungles, A., 2002. Biogeneration of C13- norisoprenoid compounds: experiments supportive for an apocarotenoid pathway in grapevines. Anal. Chim. Acta 458, 3-14. https://doi.org/10.1016/S0003-2670(01) 01589-6.
  • Cai, W.H., Matsunami, K., Otsuka, H., Shinzato, T., Takeda, Y., 2011a. A glycerol α- Dglucuronide and a megastigmane glycoside from the leaves of Guettarda speciosa L. J. Nat. Med. 65, 364-369. https://doi.org/10.1007/s11418-010-0484-8.
  • Cai, W.H., Matsunami, K., Otsuka, H., Takeda, Y., 2011b. Symplocosionosides A-C, three megastigmane glycosides, a neolignan glucoside, and symplocosins A and B, two triterpene glycosyl esters from the Leaves of Symplocos cochinchinensis var. Philippinensi s. Amer. J. Plant Sci. 2, 609-618. https://doi.org/10.4236/ ajps.2011.24072.
  • Chen, C.M., Sun, W.G., Liu, X.R., Wei, M.S., Liang, Y., Wang, J.P., Zhu, H.C., Zhang, Y.H., 2019. Anti-inflammatory spiroaxane and drimane sesquiterpenoids from Talaromyces minioluteus (Penicillium minioluteum). Bioorg. Chem. 91, 103166 https:// doi.org/10.1016/j.bioorg.2019.103166.
  • Cooper, C.M., Davies, N.W., Motti, C.A., Menary, R.C., 2011. Glycosidic conjugates of C13 norisoprenoids, monoterpenoids, and cucurbates in Boronia megastigma (Nees). J. Agric. Food Chem. 59, 2610-2617. https://doi.org/10.1021/jf104051t.
  • Dej-adisai, S., Parndaeng, K., Wattanapiromsakul, C., 2016. Determination of phytochemical compounds, and tyrosinase inhibitory and antimicrobial activities of bioactive compounds from Streblus ilicifolius (S.Vidal) Corner. Trop. J. Pharmaceut. Res. 15, 497-506. https://doi.org/10.4314/tjpr.v15i3.10.
  • Dietz, H., Winterhalter, P., 1996. Phytotoxic constituents from Bunias orientalis leaves. Phytochemistry 42, 1005-1010.
  • Elshamy, A.I., Mohamed, T.A., Ibrahim, M.A.A., Atia, M.A.M., Yoneyama, T., Umeyama, A., Hegazy, M.F., 2021. Two novel oxetane containing lignans and a new megastigmane from Paronychia arabica and in silico analysis of them as prospective SARS-CoV-2 inhibitors. RSC Adv. 11, 20151-20163. https://doi.org/10.1039/ D1RA02486H.
  • Fujimori, T., Kasuga, R., Kaneko, H., Noguchi, M., 1975. A new acetylenic diol, 3- hydroxy-7,8-dehydro- β -ionol, from burley Nicotiana tabacum. Phytochemistry 14, 2095.
  • Huang, M.Y., Lin, J., Huang, Z.J., Xu, H.G., Hong, J., Sun, P.H., Guo, J.L., Chen, W.M., 2016. Design, synthesis and anti-inflammatory effects of novel 9-O -substitutedberberine derivatives. Med. Chem. Comm. 7, 658-666. https://doi.org/10.1039/ C5MD00577A.
  • Huang, Y., Huang, X.S., Tian, G.B., Zhang, W.X., Su, S.S., Xu, X., Li, J., Liu, B.M., 2022. Two new amide glycosides with anti-inflammatory activity from the leaves of Streblus ilicifolius (Vidal) Corner. Nat. Prod. Res. 36, 1485-1493. https://doi.org/ 10.1080/14786419.2021.1893318.
  • Kasai, R., Suzuo, M., Asakawa, J., Tanaka, O., 1977. Carbon-13 chemical shifts of isoprenoid -β -D-glucopyranosides and -β -D-mannopyranosides stereochemical influences of aglycone alcohols. Tetrahedron Lett. 175-178.
  • Kawakami, S., Matsunami, K., Otsuka, H., Shinzato, T., Takeda, Y., 2011. Crotonionosides A-G: megastigmane glycosides from leaves of Croton cascarilloides R¨auschel. Phytochemistry 72, 147-153. https://doi.org/10.1016/j. phytochem.2010.10.003.
  • Kim, C.S., Kim, K.H., Lee, K.R., 2014. Phytochemical constituents of the leaves of Hosta longipes. Nat. Prod. Sci. 20, 86-90.
  • Li, C.G., Deng, S.P., Liu, W., Zhou, D.X., Huang, Y., Liang, C.Q., Hao, L.L., Zhang, G.R., Su, S.S., Xu, X., Yang, R.Y., Li, J., Huang, X.S., 2021. α- Glucosidase inhibitory and anti-inflammatory activities of dammarane triterpenoids from the leaves of Cyclocarya paliuru s. Bioorg. Chem. 111, 104847 https://doi.org/10.1016/j. bioorg.2021.104847.
  • Li, C.M., Wang, X.L., Kuang, M.Q., Li, L., Wang, Y.R., Yang, F.X., Wang, G.L., 2019. UFL1 modulates NLRP3 inflammasome activation and protects against pyroptosis in LPSstimulated bovine mammary epithelial cells. Mol. Immunol. 112, 1-9. https://doi. org/10.1016/j.molimm.2019.04.023.
  • Liu, T., Chen, X.Y., Hu, Y.Z., Li, M.H., Wu, Y.T., Dai, M.H., Huang, Z.L., Sun, P.H., Zheng, J.X., Ren, Z., Wang, Y.F., 2022. Sesquiterpenoids and triterpenoids with anti-inflammatory effects from Artemisia vulgaris L. Phytochemistry 204, 113428. https:// doi.org/10.1016/j.phytochem.2022.113428.
  • Liu, W., Deng, S.P., Zhou, D.X., Huang, Y., Li, C.G., Hao, L.L., Zhang, G.R., Su, S.S., Xu, X., Yang, R.Y., Li, J., Huang, X.S., 2020. 3,4-seco-Dammarane triterpenoid saponins with anti-inflammatory activity isolated from the leaves of Cyclocarya paliurus. J. Agric. Food Chem. 68, 2041-2053. https://doi.org/10.1021/acs. jafc.9b06898.
  • Marukami, T., Kishi, A., Yoshikawa, M., 2001. Medicinal flowers. IV.1 marigold. (2) : structures of new ionone and sesquiterpene glycosides from Egyptian Calendula officinali s. Chem. Pharm. Bull. 49, 974-978.
  • Matsunami, K., Otsuka, H., Takeda, Y., 2010. Structural revisions of blumenol C glucoside and byzantionoside B. Chem. Pharm. Bull. 58, 438-441. https://doi.org/ 10.1248/cpb.58.438.
  • Takeda, Y., 2006. Radical-scavenging activities of new megastigmane glucosides from Macaranga tanarius (L.) MULL.-ARG. Chem. Pharm. Bull. 54, 1403-1407. https://doi.org/10.1248/cpb.54.1403.
  • Nguyen, N.T., Nguyen, H.X., Le, T.H., Nguyen, D.H., Do, T., Dang, P.H., Nguyen, M., 2022. Two new derivatives of 8-prenyl-5,7-dihydroxycoumarin from the stems of Streblus ilicifolius (S.Vidal) Corn. Nat. Prod. Res. 36, 4967-4972. https://doi.org/ 10.1080/14786419.2021.1914611.
  • Ninomiya, K.B., Morikawa, T., Zhang, Y., Nakamura, S., Matsuda, H., Muraoka, O., Yoshikawa, M., 2007. Bioactive constituents from Chinese natural medicines. XXIII.1) absolute structures of new megastigmane glycosidesedumosides A4, A5, A6, H, and I, and hepatoprotective megastigmanes from Sedum sarmentosum. Chem. Pharm. Bull. 55, 1185-1191.
  • Otsuka, H., Kido, M., Tsukihara, T., Tsukihara, K., Takeda, Y., Yamasaki, K., Takeda, Y., 1993. Absolute structure of ionol glucoside : a single-crystal X-ray analysis of dendranthemoside a pentaacetate. Chem. Pharm. Bull. 41, 1860-1862. https://doi. org/10.1248/cpb.41.1860.
  • Otsuka, H., Takeda, Y., Yamasaki, K., Takeda, Y., 1992. Structural elucidation of dendranthemosides A and B: two new β- Ionone glucosides from Dendranthema shiwogiku. Planta Med. 58, 373-375. https://doi.org/10.1055/s-2006-961489.
  • Otsuka, H., Tamaki, A., 2002. Platanionosides D-J: megastigmane glycosides from the leaves of Alangium platanifolium (Sieb, et Zucc.) harms var. platanifolium Sieb, et Zucc. Chem. Pharm. Bull. 50, 390-394.
  • Otsuka, H., Yao, M., Kamada, K., Takeda, Y., 1995. Alangionosides G-M: glycosides of megastigmane derivatives from the leaves of Alangium premnifolium. Chem. Pharm. Bull. 754-759.
  • Pan, S., Pirker, T., Kunert, O., Kretschmer, N., Hummelbrunner, S., Latkolik, S.-L., Rappai, J., Dirsch, V.M., Bochkov, V., Bauer, R., 2019. C13 Megastigmane derivatives from Epipremnum pinnatum: β -damascenone inhibits the expression of pro-Inflammatory cytokines and leukocyte adhesion molecules as well as NF-κB signaling. Front. Pharmacol. 10, 1351-1364. https://doi.org/10.3389/ fphar.2019.01351.
  • Panza, E., Tersigni, M., Iorizzi, M., Zollo, F., De Marino, S., Festa, C., Napolitano, M., Castello, G., Ialenti, A., Ianaro, A., 2011. Lauroside B, a megastigmane glycoside from Laurus Nobilis (Bay Laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation. J. Nat. Prod. 74, 228-233. https://doi.org/ 10.1021/np100688g.
  • Sefton, M.A., Ralph, G.K.S., Williams, J.A.P., 1989. Norisoprenoids in vitis vinifera white wine grapes and the identification of a precursor of damascenone in these fruitst. Aust. J. Chem. 2071-2084.
  • Shi, T., Wang, S., Zeng, K., Tu, P., Jiang, Y., 2013. Inhibitory constituents from the aerial parts of Polygala tenuifolia on LPS-induced NO production in BV2 microglia cells. Bioorg. Med. Chem. Lett. 23, 5904-5908. https://doi.org/10.1016/j. bmcl.2013.08.085.
  • Shin, K., Kim, I., Park, Y., Ha, J., Choi, J., Park, H., Lee, Y.-S., Lee, K., 2004. Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-α production. Biochem. Pharmacol. 68, 2327-2336. https://doi.org/10.1016/j.bcp.2004.08.002.
  • Singh, B., Chettri, A., Adhikari, D., Barik, S.-K., 2012. Taxonomic history, rediscovery, and assessment of threats status of Streblus Ilicifolius (Moraceae) from India. J. Bot. Res. Inst. Tex. 2, 611-614.
  • S¨ohretoglu, D., Kuruuzum-Uz, A., Simon, A., Patocs ´, T., D´ek´any, M., 2014. New secondary metabolites from Quercus coccifera L. Rec. Nat.Prod. 8, 323.
  • Su, C., Qi, B.W., Wang, J., Ding, N., Wu, Y., Shi, X.P., Zhu, Z.X., Liu, X., Wang, X.H., Zheng, J., Tu, P.F., Shi, S.P., 2018. Megastigmane glycosides from Urena lobata. Fitoterapia 127, 123-128. https://doi.org/10.1016/j.fitote.2018.02.017.
  • Takeda, Y., Zhang, H., Matsumoto, T., Otsuka, H., Oosio, Y., Honda, G., Tabata, M., Fujita, T., Sun, H., Sezik, E., Yesilada, E., 1997. Megastigmane glycosides from Salvia nemorosa. Phytochemistry 44, 117-120. https://doi.org/10.1016/s0031-9422(96) 00359-7.
  • Takeshige, Y., Kawakami, S., Matsunami, K., Otsuka, H., Lhieochaiphant, D., Lhieochaiphant, S., 2012. Oblongionosides A-F, megastigmane glycosides from the leaves of Croton oblongifolius Roxburgh. Phytochemistry 80, 132-136. https://doi. org/10.1016/j.phytochem.2012.05.011.
  • Yaermaimaiti, S., Turak, A., Huang, Q., Liu, G.Y., Zhao, J.Y., Aisa, H.A., 2022. Megastigmane sesquiterpenoids from whole plants of Viola kunawurensis. Phytochemistry 203, 113361-113367. https://doi.org/10.1016/j. phytochem.2022.113361.
  • Yan, J.K., Ding, L.Q., Shi, X.L., Donkor, P.O., Chen, L.X., Qiu, F., 2017a. Megastigmane glycosides from leaves of Eucommia ulmoides Oliver with ACE inhibitory activity. Fitoterapia 116, 121-125. https://doi.org/10.1016/j.fitote.2016.12.001.
  • Yan, J.K., Shi, X.L., Donkor, P.O., Zhu, H.J., Gao, X.M., Ding, L.Q., Qiu, F., 2017b. Nine pairs of megastigmane enantiomers from the leaves of Eucommia ulmoides Oliver.
  • J. Nat. Med. 71, 780-790. https://doi.org/10.1007/s11418-017-1102-9.
  • Yeom, M., Kim, J., Min, J.H., Hwang, M.K., Jung, H., Sohn, Y., 2015. Xanthii fructus inhibits inflammatory responses in LPS-stimulated RAW 264.7 macrophages through suppressing NF-κB and JNK/p38 MAPK. J. Ethnopharmacol. 176, 394-401. https:// doi.org/10.1016/j.jep.2015.11.020.
  • Yu, Q., Otsuka, H., Hirata, E., Shinzato, T., Takeda, Y., 2002. Turpinionosides A-E: megastigmane glucosides from leaves of Turpinia ternata NAKAI. Chem. Pharm. Bull. 50, 640-644.
  • Yue, Y.D., Xiang, Z.N., Chen, J.C., 2022. Two new compounds with anti-inflammatory activity from Alangium chinense. Nat. Pro. Res. 36, 891-895. https://doi.org/ 10.1080/14786419.2020.1843033.
  • Zhang, G.R., Hao, L.L., Zhou, D.X., Liu, W., Li, C.G., Su, S.S., Xu, X., Huang, X.S., Li, J., 2019. A new phenylpropanoid glycoside from the bark of Streblus ilicifolius (Vidal) Corner. Biochem. Systemat. Ecol. 87, 103962 https://doi.org/10.1016/j. bse.2019.103962.
  • Zhang, Y.J., Wang, K., Chen, H.C., He, R.J., Cai, R.L., Li, J., Zhou, D.X., Liu, W., Huang, X.S., Yang, R.Y., Deng, S.P., Li, J., Guan, X.L., 2018. Anti-inflammatory lignans and phenylethanoid glycosides from the root of Isodon ternifolius (D.Don) Kudˆo. Phytochemistry 153, 36-47. https://doi.org/10.1016/j. phytochem.2018.05.017.