Published July 30, 2023 | Version CC BY-NC-ND 4.0
Journal article Open

Structural Topology Optimization of Headphone

  • 1. Department ofMechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, United States.
  • 2. Department of Industrial Design, National Institute of Technology, Rourkela, India

Contributors

Contact person:

  • 1. Department of Industrial Design, National Institute of Technology, Rourkela, India

Description

Abstract: Topology optimization is a mathematical strategy enhancing a system's performance by figuring out the best arrangement of materials for a certain set of loads, boundary conditions, and constraints. In basic terms, it builds a design space from a model (3D model). To make the design more efficient, it then eliminates or displaces material inside it. By defining cavities in continuous design domains, topology optimization is an excellent technique for generating lightweight, high-performance, and cost-effective structures. Like every other optimization problem, it needs some boundary conditions, constraints, an objective function, and criteria to attain optimality, which must be decided by the type of design we are making, material costs, mechanical performance, and resistance to failure. Since there are several iterations in the optimization rounds which allow us to play with variables within the boundary conditions to come up with an aesthetically pleasing, mechanically optimized design. We are in hope that the proper implementation of this would lead to the betterment of society.

Notes

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

Files

F74620311623.pdf

Files (1.5 MB)

Name Size Download all
md5:01b90fe40844c327871f6ef5f6776355
1.5 MB Preview Download

Additional details

Related works

Is cited by
Journal article: 2277-3878 (ISSN)

References

  • Rozvany GIN. A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 2009;37:217–37. doi:10.1007/s00158-007-0217-0.
  • Sigmund O, Maute K. Topology optimization approaches. Struct Multidiscip optim 2013;48:1031–55. doi:10.1007/s00158-013-0978-6.
  • van Dijk NP, Maute K, Langelaar M, van Keulen F. Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 2013;48:437–72. doi:10.1007/s00158-013-0912-y.
  • Bendsøe MP, Sigmund O. Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004.28
  • Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Computational Methods Appl Mech Eng 2003;192:227–46. doi:10.1016/S0045-7825(02)00559-5.
  • Allaire G, Jouve F, Toader A-M. Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 2004;194:363–93. doi:10.1016/j.jcp.2003.09.032.
  • Liu J, Ma Y. A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 2016;100:161–75. doi:10.1016/j.advengsoft.2016.07.017.
  • Lazarov BS, Wang F, Sigmund O. Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 2016;86:189–218. doi:10.1007/s00419-015-1106-4
  • Guest JK, Prévost JH, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 2004;61:238–54. doi:10.1002/nme.1064.
  • Guest JK. Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 2009;37:463–73. doi:10.1007/s00158-008-0250-7.
  • Guo X, Zhang W, Zhong W. Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 2014;272:354–78. doi:10.1016/j.cma.2014.01.010
  • Zhang W, Zhong W, Guo X. An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 2014;282:71–86. doi:10.1016/j.cma.2014.08.027
  • Allaire G, Jouve F, Michailidis G. Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 2016;53:1349–82. doi:10.1007/s00158-016-1453-y.
  • Liu J, Ma Y-S. 3D level-set topology optimization: a machining feature-based approach. Struct Multidiscip Optim 2015;52:563–82. doi:10.1007/s00158-015-1263-7.
  • Brackett D, Ashcroft I, Hague R. TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING, Austin, TX: 2011.
  • Ahn SH, Montero M, Odell D, Roundy S, Wright PK. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 2002;8:248–57. doi:10.1108/13552540210441166.
  • Zhang P, Liu J, To AC. Role of anisotropic properties on topology optimization of additive manufactured load bearing structures. Scr Mater 2017;135:148–52. doi:10.1016/j.scriptamat.2016.10.021.
  • Mirzendehdel AM, Suresh K. Support structure constrained topology optimization for additive manufacturing. Comput-Aided Des 2016;81:1–13. doi:10.1016/j.cad.2016.08.006
  • Gaynor AT, Guest JK. Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscip Optim 2016;54:1157–1172. doi:10.1007/s00158-016-1551-x.
  • Guo X, Zhou J, Zhang W, Du Z, Liu C, Liu Y. Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 2017;323:27–63. doi:10.1016/j.cma.2017.05.003.
  • Allaire G, Dapogny C, Estevez R, Faure A, Michailidis G. Structural optimization under overhang constraints imposed by additive manufacturing technologies. J Comput Phys 2017;351:295–328. doi:10.1016/j.jcp.2017.09.041

Subjects

ISSN: 2277-3878 (Online)
https://portal.issn.org/resource/ISSN/2277-3878#
Retrieval Number: 100.1/ijrte.F74620311623
https://www.ijrte.org/portfolio-item/F74620311623/
Journal Website: www.ijrte.org
https://www.ijrte.org/
Publisher: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)
https://www.blueeyesintelligence.org/