Published July 30, 2023 | Version CC BY-NC-ND 4.0
Journal article Open

A Deep Learning Based Non-Destructive Method for Estimating Concrete Strength using Continuous Wavelet Transform of Vibration Signals Acquired using A Smartphone's Accelerometer

  • 1. Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Description

Abstract: Most non-destructive tests of concrete require sophis-ticated equipment and training; in this work we aim to develop a simple method to estimate the strength class of cylindrical con-crete samples based on vibrations signals that are collected after striking a concrete cylinder with a hammer. The vibration signals were collected by attaching a smartphone to the concrete cylinder and logging the vibrations registered via the smartphone’s built-in accelerometer. The acquired 1-D vibration signals are trans-formed to 2-D scalograms using continuous wavelet transform. Scalograms are then used to train a deep learningmodel to predict the strength class. Preliminary findings show that the model is capable of classifying the strength of concrete to low, high, or me-dium. The developed model achieved a high accuracy of 91.67%. The promising results of this work shed light into the future of smartphone-based measurements of construction materials’ properties.

Notes

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

Files

B77380712223.pdf

Files (976.7 kB)

Name Size Download all
md5:d85b65b443a0525354a787dff2758cd2
976.7 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 2277-3878 (ISSN)

References

  • Yeh, I.-C. Modeling of strength of high-performance concrete using ar-tificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808.
  • Lee, S.-C. Prediction of concrete strength using artificial neural net-works. Eng. Struct. 2003, 25, 849–857.
  • Bui, D.-K.; Nguyen, T.; Chou, J.-S.; Nguyen-Xuan, H.; Ngo, T.D. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance con-crete. Constr. Build. Mater. 2018, 180, 320–333.
  • Alghamdi, S. J. (2022). Classifying High Strength Concrete Mix Design Methods Using Decision Trees. Materials, 15(5), 1950.
  • Deng, F.; He, Y.; Zhou, S.; Yu, Y.; Cheng, H.; Wu, X. Compressive strength prediction of recycled concrete based on deep learning. Constr. Build. Mater. 2018, 175, 562–569.
  • Erdal, H.; Erdal, M.; Simsek, O.; Erdal, H.I. Prediction of concrete com-pressive strength using non-destructive test results. Comp. Concr. 2018, 21, 407–417.
  • Williams, K.C.; Partheeban, P. An experimental and numerical approach in strength prediction of reclaimed rubber concrete. Adv. Concr. Constr. 2018, 6, 87.
  • Kasperkiewicz, J.; Racz, J.; Dubrawski, A. HPC strength prediction us-ing artificial neural network. J. Comput. Civ. Eng. 1995, 9, 279–284.
  • Dias, W.; Pooliyadda, S. Neural networks for predicting properties of concretes with admixtures. Constr. Build. Mater. 2001, 15, 371–379.
  • Öztaş, A.; Pala, M.; Özbay, E.A.; Kanca, E.; Caglar, N.; Bhatti, M.A. Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 2006, 20, 769–775.
  • Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E. Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 2015, 27, 04015017.
  • Almohammed, F.; Sihag, P.; Sammen, S.S.; Ostrowski, K.A.; Singh, K.; Prasad, C.; Zajdel, P. Assessment of Soft Computing Techniques for the Prediction of Compressive Strength of Bacterial Concrete. Materials 2022, 15, 489.
  • Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Mu-sarat, M.A.; Vatin, N.I. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Ap-proaches: MLPNN, ANFIS, and GEP. Materials 2021, 14, 7531.
  • Alshihri, M.M.; Azmy, A.M.; El-Bisy, M.S. Neural networks for pre-dicting compressive strength of structural light weight concrete. Constr. Build. Mater. 2009, 23, 2214–2219.
  • Siddique, R.; Aggarwal, P.; Aggarwal, Y. Prediction of compressive strength of self-compacting concrete containing bottom ash using artifi-cial neural networks. Adv. Eng. Softw. 2011, 42, 780–786.
  • Topcu, I.B.; Sarıdemir, M. Prediction of properties of waste AAC ag-gregate concrete using artificial neural network. Comput. Mater. Sci. 2007, 41, 117–125.
  • Sadegh-Azar, H.; Feldbusch, A.; Agne, P.; Kögel, C.: Schwingungsun-tersuchungen mit dem Smartphone und Tablet, Bauingenieur, Mai 2017
  • LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub-bard, W., & Jackel, L. D. (1989). Backpropagation applied to handwrit-ten zip code recognition. Neural computation, 1(4), 541-551.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceed-ings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).

Subjects

ISSN: 2277-3878 (Online)
https://portal.issn.org/resource/ISSN/2277-3878#
Retrieval Number: 100.1/ijrte.B77380712223
https://www.ijrte.org/portfolio-item/B77380712223/
Journal Website: www.ijrte.org
https://www.ijrte.org/
Publisher: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)
https://www.blueeyesintelligence.org/