Published April 30, 2022 | Version v1
Journal article Restricted

Autoproteolysis of Procerain and Procerain B mediated by structural changes

  • 1. , Neeraj Gaur & * & Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India

Description

Srivastava, Gaurav, Gaur, Neeraj, Makde, Ravindra D., Jamdar, Sahayog N. (2022): Autoproteolysis of Procerain and Procerain B mediated by structural changes. Phytochemistry (113086) 196: 113086, DOI: 10.1016/j.phytochem.2022.113086, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113086

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF8BFFD1FFC85E55794CFF84FFC5FFB6

References

  • Berendsen, H., Postma, J.P.M., van Gunsteren, W., Hermans, J., 1981. Interaction models for water in relation to protein hydration. in: Intermol Forces 331-342. https://doi. org/10.1007/978-94-015-7658-1_21.
  • Bickerstaff, G.F., Zhou, H., 1993. Protease activity and autodigestion (autolysis) assays using coomassie blue dye binding. Anal. Biochem. 210, 155-158. https://doi.org/ 10.1006/abio.1993.1166.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1006/abio.1976.9999.
  • Dubey, V.K., Jagannadham, M.V., 2003a. Procerain, a stable cysteine protease from the latex of Calotropis procera. Phytochemistry 62, 1057-1071. https://doi.org/ 10.1016/s0031-9422(02)00676-3.
  • Dubey, V.K., Jagannadham, M.V., 2003b. Differences in the unfolding of procerain induced by pH, guanidine hydrochloride, urea, and temperature. Biochemistry 42, 12287-12297. https://doi.org/10.1021/bi035047m.
  • Huynh, K., Partch, C.L., 2015. Analysis of protein stability and ligand interactions by thermal shift assay. Curr. protocols protein sci. 79 https://doi.org/10.1002/ 0471140864.ps2809s79, 28.9.1-28.9.14.
  • Jomaa, A., Iwanczyk, J., Tran, J., Ortega, J., 2009. Characterization of the autocleavage process of the <em>Escherichia coli</em> HtrA protein: implications for its physiological role. J. Bacteriol. 191, 1924-1932. https://doi.org/10.1128/ JB.01187-08.
  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0.
  • Lee, H.S., Kim, Y.J., Cho, Y., Kim, S.-J., Lee, J.-H., Kang, S.G., 2007. Characterization of prolyl oligopeptidase from hyperthermophilic archaeon Thermococcus sp. NA1.J. Biosci. Bioeng. 103, 221-228. https://doi.org/10.1263/jbb.103.221.
  • Lemak, A.S., Balabaev, N.K., 1994. On the berendsen thermostat. Mol. Simulat. 13, 177-187. https://doi.org/10.1080/08927029408021981.
  • Lop´ez, L.M.I., Viana, C.A., Errasti, M.E., Garro, M.L., Martegani, J.E., Mazzilli, G.A., Freitas, C.D.T., Araujo,´ I.M.S., da Silva, R.O., Ramos, M.V., 2017. Latex peptidases of Calotropis procera for dehairing of leather as an alternative to environmentally toxic sodium sulfide treatment. Bioproc. Biosyst. Eng. 40, 1391-1398. https://doi.org/ 10.1007/s00449-017-1796-9.
  • Maroux, S., Desnuelle, P., 1969. On some autolyzed derivatives of bovine trypsin. Biochim. Biophys. Acta 181, 59-72. https://doi.org/10.1016/0005-2795(69)90227- x.
  • Matsumiya, Y., Nishikawa, K., Aoshima, H., Inouye, K., Kubo, M., 2004. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu 155 at an autodegradation site. J. Biochem. 135, 547-553. https:// doi.org/10.1093/jb/mvh067.
  • Matsumoto, K., Mizoue, K., Kitamura, K., Tse, W.C., Huber, C.P., Ishida, T., 1999. Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Biopolymers 51, 99-107. https://doi.org/10.1002/(SICI)1097-0282(1999)51: 1<99::AID-BIP11>3.0.CO;2-R.
  • Memari, N., Jiang, W., Diamandis, E.P., Luo, L.-Y., 2007. Enzymatic properties of human kallikrein-related peptidase 12 (KLK12). Biol. Chem. 388, 427-435. https://doi.org/ 10.1515/BC.2007.049.
  • Parrinello, M., Rahman, A., 1980. Crystal structure and pair potentials: a moleculardynamics study. Phys. Rev. Lett. 45, 1196-1199. https://doi.org/10.1103/ PhysRevLett.45.1196.
  • Rajesh, R., Raghavendra Gowda, C.D., Nataraju, A., Dhananjaya, B.L., Kemparaju, K., Vishwanath, B.S., 2005. Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon. off. j. Intl Soc. Toxinol. 46, 84-92. https:// doi.org/10.1016/j.toxicon.2005.03.012.
  • Ramos, M.V., Freitas, A.P.F., Leittao, R.F.C., Costa, D.V.S., Cerqueira, G.S., Martins, D.S., Martins, C.S., Alencar, N.M.N., Freitas, L.B.N., Brito, G.A.C., 2020. Antiinflammatory latex proteins of the medicinal plant Calotropis procera: a promising alternative for oral mucositis treatment. Inflamm. Res. 69, 951-966. https://doi.org/ 10.1007/s00011-020-01365-7.
  • Shapira, E., Arnon, R., 1969. Cleavage of one specific disulfide bond in papain. J. Biol. Chem. 244, 1026-1032.
  • Sharma, P., Sharma, J.D., 2001. In vitro hemolysis of human erythrocytes - by plant extracts with antiplasmodial activity. J. Ethnopharmacol. 74, 239-243. https://doi. org/10.1016/s0378-8741(00)00370-6.
  • Silva, M.Z.R., Oliveira, J.P.B., Ramos, M.V., Farias, D.F., de S´a, C.A., Ribeiro, J.A.C., Silva, A.F.B., de Sousa, J.S., Zambelli, R.A., da Silva, A.C., Furtado, G.P., Grangeiro, T.B., Vasconcelos, M.S., Silveira, S.R., Freitas, C.D.T., 2020. Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chem. 307, 125574 https://doi.org/10.1016/j. foodchem.2019.125574.
  • Silveira, S.R., Coelho, R.A., Sousa, B.F.E., Oliveira, J.S., de Lopez, L.M.I., Lima-Filho, J.V. M., Rocha Junior, P.A.V., Souza, D.P., de Freitas, C.D.T., de Ramos, M.V., 2021. Standardized production of a homogeneous latex enzyme source overcoming seasonality and microenvironmental variables. Prep. Biochem. Biotechnol. 51, 375-385. https://doi.org/10.1080/10826068.2020.1818258.
  • Singh, A.N., Dubey, V.K., 2011. Exploring applications of procerain b, a novel protease from Calotropis procera, and characterization by N-terminal sequencing as well as peptide mass fingerprinting. Appl. Biochem. Biotechnol. 164, 573-580. https://doi. org/10.1007/s12010-011-9158-6.
  • Singh, A.N., Shukla, A.K., Jagannadham, M.v., Dubey, V.K., 2010a. Purification of a novel cysteine protease, procerain B, from Calotropis procera with distinct characteristics compared to procerain. Process Biochem. 45, 399-406. https://doi. org/10.1016/J.PROCBIO.2009.10.014.
  • Singh, A.N., Shukla, A.K., Jagannadham, M.V., Dubey, V.K., 2010b. Purification of a novel cysteine protease, procerain B, from Calotropis procera with distinct characteristics compared to procerain. Process Biochem. 45, 399-406. https://doi. org/10.1016/j.procbio.2009.10.014.
  • Singhal, A., Kumar, V.L., 2009. Effect of aqueous suspension of dried latex of Calotropis procera on hepatorenal functions in rat. J. Ethnopharmacol. 122, 172-174. https:// doi.org/10.1016/j.jep.2008.12.002.
  • Sziegoleit, A., 1984. A novel proteinase from human pancreas. Biochem. J. 219, 735-742. https://doi.org/10.1042/bj2190735.
  • Urade, R., Yasunishi, A., Okudo, H., Moriyama, T., Kito, M., 1999. Autodegradation of protein disulfide isomerase. Biosc. Biotech. Biochem. 63, 610-613. https://doi.org/ 10.1271/bbb.63.610.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., 2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701-1718. https:// doi.org/10.1002/jcc.20291.
  • Van Gunsteren, W.F., Berendsen, H.J.C., 1988. A leap-frog algorithm for stochastic dynamics. Mol. Simulat. 1, 173-185. https://doi.org/10.1080/ 08927028808080941.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., Mackerell, A.D.J., 2010. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671-690. https://doi. org/10.1002/jcc.21367.
  • Verma, S., Dixit, R., Pandey, K.C., 2016. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front. Pharmacol. 7 (107), 1-12. https://doi.org/10.3389/fphar.2016.00107.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303. https://doi.org/10.1093/nar/gky427.