Published January 31, 2022
| Version v1
Journal article
Restricted
Chemical constituents from the flowers of Hypericum monogynum L. with COX-2 inhibitory activity
Creators
- 1. , Yan-Rong Zeng & , Jue Yang & , Wenwen He & , Junlei Chen & , & , Ping Yi & , Lie-Jun Huang & , Wei Gu & , Zhan-Xing Hu & , Chun-Mao Yuan & * , & ** & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China & , Yan-Rong Zeng & , Jue Yang & , Wenwen He & , Junlei Chen & , & , Ping Yi & , Lie-Jun Huang & , Wei Gu & , Zhan-Xing Hu & , Chun-Mao Yuan & * , & ** & The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China & , Yan-Rong Zeng & , Jue Yang
Description
Li, Ya-Nan, Zeng, Yan-Rong, Yang, Jue, He, Wenwen, Chen, Junlei, Deng, Lulu, Yi, Ping, Huang, Lie-Jun, Gu, Wei, Hu, Zhan-Xing, Yuan, Chun-Mao, Hao, Xiao-Jiang (2022): Chemical constituents from the flowers of Hypericum monogynum L. with COX-2 inhibitory activity. Phytochemistry (112970) 193: 112970, DOI: 10.1016/j.phytochem.2021.112970, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112970
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:DF0D4955FFC5F74A1B70FB08956BD961
References
- Chen, Q., Di, L., Zhang, Y., Li, N., 2020. Chemical constituents with cytotoxic and anti-inflammatory activity in Hypericum sampsonii and the antitumor potential under the view of cancer-related inflammation. J. Ethnopharmacol. 259, 112948. https://doi. org/10.1016/j.jep.2020.112948.
- Editorial committee of the administration bureau of traditional Chinese medicine, 1999. Chinese Materia Medica (Zhonghua Bencao), vol. 3. Shanghai Science and Technology Press, Shanghai, pp. 602-603.
- Editorial Committee of Chinese Flora, 1990, 50. Science Press, Beijing, pp. 12-15.
- Goetz, G., Fkyerat, A., MĀ“etais, N., Manuela, K., Tabacchia, R., Pezetb, R., Pont, V., 1999. Resistance factors to grey mould in grape berries: identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry 52, 759-767. https:// doi.org/10.1016/S0031-9422(99)00351-9.
- Hu, K., Wang, W., Cheng, H., Pan, S.S., Ren, J., 2011. Synthesis and cytotoxicity of novel chrysin derivatives. Med. Chem. Res. 20, 838-846. https://doi.org/10.1007/ s00044-010-9395-1.
- Isaza, J.H., Ito, H., Yoshida, T., 2001. A flavonol glycoside-lignan ester and accompanying acylated glucosides from Monochaetum multiflorum. Phytochemistry 58, 321-327. https://doi.org/10.1016/S0031-9422(01)00247-3.
- Jiang, L., Sodik, N., Khayrulla, B., Muhammad, N.Q., Zhao, H.Q., Aisa, H.A., 2015. Phytochemicaln profiling and evaluation of pharmacological activities of Hypericum scabrum L. Molecules 20, 11257-11271. https://doi.org/10.3390/ molecules200611257.
- Lee, C.W., Yen, F.L., Huang, H.W., Wu, T.H., KoF, H.H., Tzeng, W.S., Lin, C.C., 2012. Resveratrol nanoparticle system improves dissolution properties and enhances the hepatoprotective effect of resveratrol through antioxidant and anti-Inflammatory pathways. J. Agric. Food Chem. 60, 4662-4671. https://doi.org/10.1021/ jf2050137.
- Orlando, B.J., Malkowski, M.G., 2016. Substrate-selective Inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone. J. Biol. Chem. 291, 15069-15081. https://doi.org/10.1074/jbc.M116.725713.
- Qin, F.Y., Zhang, H.X., Di, Q.Q., Wang, Y., Yan, Y.M., Chen, W.L., Cheng, Y.X., 2020. Ganoderma cochlear metabolites as probes to identify a COX2 active site and as in vitro and in vivo anti-inflammatory agents. Org. Lett. 22, 2574-2578. https://doi. org/10.1021/acs.orglett.0c00452.
- Sheng, L., Yang, Y., Zhang, Y., Li, N., 2019. Chemical constituents of Patrinia heterophylla Bunge and selective cytotoxicity against six human tumor cells. J. Ethnopharmacol. 236, 129-135. https://doi.org/10.1016/j.jep.2019.03.005.
- Tanaka, N., Abe, S., Hasegawa, K., Shiro, M., Kobayashi, J.I., 2011. Biyoulactones A-C, new pentacyclic meroterpenoids from Hypericum chinense. Org. Lett. 13, 5488-5491. https://doi.org/10.1021/ol2021548.
- Wang, W., Zeng, Y.H., Osman, K., Shinde, K., Rahman, M., Gibbons, S., 2010. Acylphloroglucinols, and a dimeric xanthone from Hypericum chinense. J. Nat. Prod. 73, 1815-1820. https://doi.org/10.1021/np1004483.
- Winnie, K.P.S., Simon, G., 2006. Anti-staphylococcal acylphloroglucinols from Hypericum beanie. Phytochemistry 67, 2568-2572. https://doi.org/10.1016/j. phytochem.2006.09.037.
- Xu, W.J., Li, R.J., Quasie, O., Yang, M.H., Kong, L.Y., Luo, J., 2016. Polyprenylated tetraoxygenated xanthones from the roots of Hypericum monogynum and their neuroprotective activities. J. Nat. Prod. 79, 1971-1981. https://doi.org/10.1021/ acs.jnatprod.6b00251.
- Yan, Y.M., Zhang, H.X., Liu, H., Wang, Y., Wu, J.B., Li, Y.P., Chen, Y.X., 2019. (+/ )-Lucidumone, a COX-2 inhibitory caged fungal meroterpenoid from Ganoderma lucidum. Org. Lett. 21, 8523-8527. https://doi.org/10.1021/acs.orglett.9b02840.
- Zeng, Y.R., Wang, L.P., Hu, Z.X., Yi, P., Yang, W.X., Gu, W., Huang, L.J., Yuan, C.M., Hao, X.J., 2018. Chromanopyrones and a flavone from Hypericum monogynum.Fitoterapia 125, 59-64. https://doi.org/10.1016/j.fitote.2017.12.013.
- Zeng, Y.R., Yuan, C.M., Li, Y.N., Huang, L.J., Hu, Z.X., Gu, W., Hao, X.J., 2021a. Hymoins A-D: two pairs of polyprenylated acylphloroglucinols from Hypericum monogynum and their light-induced transformation. Org. Lett. 23, 3125-3129. https://doi.org/ 10.1021/acs.orglett.1c00811.
- Zeng, Y.R., Yang, J., Li, Y.N., Gu, W., Huang, L.J., Yi, P., Yuan, C.M., Hao, X.J., 2021b. Hypermogins A-D, four highly modified polycyclic polyprenylatedacylphloroglucinols from Hypericum monogynum. Tetrahedron Lett. 2021, 64152733. https://doi.org/10.1016/j.tetlet.2020.152733.
- Zhang, Z.Z., Zeng, Y.R., Li, Y.N., Hu, Z.X., Huang, L.J., Gu, W., Hao, X.J., Yuan, C.M., 2020. Two new seco-polycyclic polyprenylated acylphloroglucinol from Hypericum sampsonii. Org. Biomol. Chem. 19, 216-219. https://doi.org/10.1039/D0OB02072A.