There is a newer version of the record available.

Published July 11, 2023 | Version v1
Preprint Open

DATTES: Data Analysis Tools for Tests on Energy Storage

  • 1. Univ Lyon, Univ Eiffel, ENTPE, LICIT-ECO7 Lab, 69500 Bron, France
  • 2. Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005, 69622 Villeurbanne, France

Description

Experiments are essential to understand the behaviour and performance of energy storage systems. In this field, a considerable amount of experimental data is generated and data processing
is a tedious task. To date, research teams working in the field of energy storage tend to focus on developing their own analysis tools rather than using existing open source software. This strategy can be detrimental to the quality and reproducibility of the research. This paper presents DATTES, a free and open source software for analysing experimental battery data. The software provides a comprehensive and customizable toolkit for extracting, analysing and visualizing experimental data. It also creates gateways to other open software and tools. In this way, DATTES enables users to get the most out of their experimental data and engage in open and reproducible science.

Files

dattes_preprint.pdf

Files (356.2 kB)

Name Size Download all
md5:f7d93f3eb658d1bbd23d218005881b6a
356.2 kB Preview Download

Additional details

References

  • S. Hettrick, 2014:Software in research survey (2018). doi:10.5281/zenodo.1183562.
  • M. Hassini, E. Redondo-Iglesias, P. Venet, Lithium-ion battery data: From production to prediction, Batteries (in press, 2023).
  • P. Herring, C. B. Gopal, M. Aykol, J. H. Montoya, A. Anapolsky, P. M. Attia, W. Gent, J. S. Hummelshøj, L. Hung, H.-K. Kwon, et al., Beep: A python library for battery evaluation and early prediction, SoftwareX 11 (2020) 100506. doi:10.1016/j.softx.2020.100506.
  • V. Sulzer, S. G. Marquis, R. Timms, M. Robinson, S. J. Chapman, Python battery mathematical modelling (pybamm), Journal of Open Research Software 9 (1) (2021). doi:10.5334/JORS.309.
  • M. D. Murbach, B. Gerwe, N. Dawson-Elli, L.-k. Tsui, impedance. py: A python package for electrochemical impedance analysis, Journal of Open Source Software 5 (52) (2020) 2349. doi: 10.21105/joss.02349.
  • VEHLIB. URL: https://gitlab.univ-eiffel.fr/eco7/vehlib
  • M. Hassini, E. Redondo-Iglesias, P. Venet, S. Gillet, Y. Zitouni, Second Life Batteries in a Mobile Charging Station: Model Based Performance Assessment, in: EVS35, 35nd International Electric Vehicle Symposium & Exhibition, Oslo, Norway, 2022. URL: https://hal.science/hal-03708744
  • M. Hassini, E. Redondo-Iglesias, P. Venet, S. Gillet, Y. Zitouni, Second Life Batteries in a Mobile Charging Station: Experimental Performance Assessment, working paper or preprint (2022). URL: https://hal.science/hal-03713844v1
  • M. Hassini, E. Redondo-Iglesias, P. Venet, Second-life batteries modeling for performance tracking in a mobile charging station, World Electric Vehicle Journal 14 (4) (2023) 94. doi:10.3390/ wevj14040094
  • DATTES : Data Analysis Tools for Tests on Energy Storage. URL: https://gitlab.com/dattes/dattes/
  • R. C. Jiménez, M. Kuzak, M. Alhamdoosh, M. Barker, B. Batut, M. Borg, S. Capella-Gutierrez, N. C. Hong, M. Cook, M. Corpas, et al., Four simple recommendations to encourage best practices in research software, F1000Research 6 (2017). doi:10.12688/f1000research.11407.1