Published September 6, 2022 | Version v1
Journal article Open

Effect of nutrients, inoculum and co-substrates on methane potential of cattle manure

  • 1. Universidad Nacional de Colombia Sede Medellín
  • 2. Universidad Nacional de Colombia Sede Palmira

Contributors

  • 1. Universidad de Antioquia

Description

In this research, the methane potential of the codigestion of cattle manure (CM) with guinea pig manure (GPM) and dairy wastewater (DW) was evaluated. The effect of the addition of nutrients, inoculum (I) and co-substrates on methane production was studied. Later, two low-cost tubular biodigesters were implemented, at a rural farm in the cold climate municipality of Cumbal, fed with the mixture of CM and co-substrates that produced higher biogas production at the lab scale. The results evidenced that the addition of nutrients had no significant effect on methane potential. The mixture CM + GPM + DW + I, produced a theoretical biomethane potential (BMP) of 69.07%, significantly higher than the percentage of the theoretical BMP obtained individually, 43.81% and 34.49% for CM + I and DW+ I respectively. Further, it was observed that the addition of inoculum avoided problems of acidification. Finally, it was proved that this process can reduce environmental contamination and, at the same time, be a sustainable source of renewable energy for rural families in Cumbal (Nariño-Colombia).

Files

4. 347017.pdf

Files (494.7 kB)

Name Size Download all
md5:4d52b47ab202b77b749884a9bebf352d
494.7 kB Preview Download

Additional details

References

  • I. S. Zarkadas, A. S. Sofikiti, E. A. Voudrias, and G. A. Pilidis, "Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: Focussing on mixing ratios," Renewable Energy, vol. 80, 2015. [Online]. Available: https://doi.org/10.1016/j.renene.2015.02.015
  • M. U. Khan and B. K. Ahring, ""improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure," Bioresource Technology, vol. 321, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.biortech.2020.124427
  • A. N. Hristov, J. Oh, C. Lee, R. Meinen, F. Montes, and et al. (2013) Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera – una revisión de las opciones técnicas para la reducción de las emisiones de gases diferentes al co2. Organización de las naciones unidas para la agricultura y la alimentación. Italy, IT. [Online]. Available: http://www.fao.org/3/a-i3288s.pdf
  • N. B. Montesdeoca, K. G. Alcívar, R. J. Baquerizo, Y. G. Salcedo, O. P. Ones, I. P. Reyes, and et al., "Synergistic and antagonistic effects in anaerobic co-digestion. analysis of the methane yield kinetics," Revista Facultad de Ingeniería Universidad de Antioquia, 2022. [Online]. Available: https://www.doi.org/10.17533/udea.redin.20220473
  • F. O.Agyeman and W. Tao, "Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate," Journal of Environmental Management, vol. 133, Jan. 15, 2014. [Online]. Available: https://doi.org/10.1016/j.jenvman.2013.12.016
  • J. M. Alvarez, J. Dosta, M. S. Romero, X. Fonoll, M. Peces, and et al., "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, vol. 36, Aug. 2014. [Online]. Available: https://doi.org/10.1016/j.rser.2014.04.039
  • H. Escalante. (2014) Atlas del potencial energético de la biomasa residual en colombia. [Online]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspx
  • (2012, Jun.) Plan de desarrollo departamentental 2012-2015. Gobernación de Nariño. Pasto, CO. [Online]. Available: http://uvsalud.univalle.edu.co/pdf/procesos_de_interes/departamental/pnnarino.pdf
  • I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, and et al., "Defining the biomethane potential (bmp) of solid organic wastes and energy crops: A proposed protocol for batch assays," Water Science and Technology, vol. 59, no. 5, 2009. [Online]. Available: https://doi.org/10.2166/wst.2009.040
  • C. Holliger, M. Alves, D. Andrade, I. Angelidaki, S. Astals, and et al., "Towards a standardization of biomethane potential tests," Water Science and Technology, vol. 74, no. 11, 2016. [Online]. Available: https://doi.org/10.2166/wst.2016.336
  • F. Raposo, R. Borja, and C. I. Bianco, "Predictive regression models for biochemical methane potential tests of biomass samples: Pitfalls and challenges of laboratory measurements," Renewable and Sustainable Energy Reviews, vol. 127, Jul. 2020. [Online]. Available: https://doi.org/10.1016/j.rser.2020.109890
  • B. A. Parra, M. N. Mendoza, D. R. Henao, P. C. Manyoma, and P. T. Lozada, "Selection of inocula conditioning methodologies for the anaerobic digestion of food waste," Revista Facultad de Ingeniería, Universidad de Antioquia, vol. 92, 2019. [Online]. Available: https://doi.org/10.17533/udea.redin.20190510
  • I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, L. Campos, and et al. (2006, Oct.) Anaerobic biodegradation, activity and inhibition (abai). Institute of Environment and Resources, Technical University of Denmark. Denmark, EU.
  • J. M. Herrero and J. Cipriano, "Design methodology for low cost tubular digesters," Bioresource Technology, vol. 108, Mar. 2012. [Online]. Available: https://doi.org/10.1016/j.biortech.2011.12.117 [15] APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington, DC: American Public Health Assossiation and American Water Works Assossiation and Water Environment Federation, 2005.
  • P. Torres and A. Pérez, "Actividad metanogénica específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales," Ingeniería de Recursos Naturales y del Ambiente, vol. 9, 2010. [Online]. Available: http://www.redalyc.org/articulo.oa?id=231116434001
  • A. M. Buswell and H. F. Mueller, "Mechanism of methane fermentation," Industrial Engineering Chemistry, vol. 44, no. 3, 1952. [Online]. Available: https://doi.org/10.1021/ie50507a033
  • R. P. Rodrigues, D. P. Rodrigues, A. Klepacz, R. C. Martins, and M. J. Quina, "Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates," Science of The Total Environment, vol. 649, Feb. 1, 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2018.08.270
  • I. Angelidaki and L. Ellegaard, "Codigestion of manure and organic wastes in centralized biogas plants: Status and future trends," Applied Biochemistry and Biotechnology, vol. 109, 2003. [Online]. Available: https://doi.org/10.1385/ABAB:109:1-3:95
  • S. M. Safavi and R. Unnthorsson, "Enhanced methane production from pig slurry with pulsed electric field pre-treatment," Environemental technology, vol. 39, no. 4, 2018. [Online]. Available: https://doi.org/10.1080/09593330.2017.1304455
  • X. Fonoll, S. Astals, J. Dosta, and J. Mata, "Anaerobic co-digestion of sewage sludge and fruit wastes: Evaluation of the transitory states when the co-substrate is changed," Chemical Engineering Journal, vol. 15, Feb. 15, 2015. [Online]. Available: https://doi.org/10.1016/j.cej.2014.10.045
  • J. Kim, H. Kim, G. Baek, and C. Lee, "Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production," Waste Management, vol. 60, Feb. 2016. [Online]. Available: https://doi.org/10.1016/j.wasman.2016.10.015
  • A. Cerón, K. T. Cáceres, A. Rincón, and A. A. Cajigas, "Influence of phand the c/n ratio on the biogas production of wastewater," Revista Facultad de Ingeniería, Universidad de Antioquia, vol. 92, 2019. [Online]. Available: https://doi.org/10.17533/udea.redin.20190627
  • F. Raposo, R. Borja, M. A. Martín, A. Martín, M. A. de la Rubia, and et al., "Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation," Chemical Engineering Journal, vol. 149, no. 1-3, Jul. 2009. [Online]. Available: https://doi.org/10.1016/j.cej.2008.10.001
  • J. D. Browne, E. Allen, and J. D.Murphy, "Improving hydrolysis of food waste in a leach bed reactor," Waste Management, vol. 33, no. 11, Nov. 2013. [Online]. Available: https://doi.org/10.1016/j.wasman.2013.06.025
  • H. Caillet and L. Adelard, "Start up strategy and process performance of semi continuous anaerobic digestion of raw sugarcane vinasse," Waste and Biomass Valorization volume, vol. 12, 2021. [Online]. Available: https://doi.org/10.1007/s12649-020-00964-z
  • M. Rasapoor, B. Young, R. Brar, A. Sarmah, W. Q. Zhuang, and et al., "Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation," Fuel, vol. 261, Feb. 1, 2020. [Online]. Available: https://doi.org/10.1016/j.fuel.2019.116497
  • D. Brown and Y. Li, "Solid state anaerobic co-digestion of yard waste and food waste for biogas production," Bioresource Technology, vol. 127, Jan. 2013. [Online]. Available: https://doi.org/10.1016/j.biortech.2012.09.081
  • B. Demirel, O. Yenigun, and T. T. Onay, "Anaerobic treatment of dairy wastewaters : a review," Process Biochemistry, vol. 40, no. 8, Jul. 2005. [Online]. Available: https://doi.org/10.1016/j.procbio.2004.12.015
  • M. koKawai, N. Nagao, N. Tajima, C. Niwa, T. Matsuyama, and et al., "The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield," Bioresource Technology, vol. 157, Apr. 2014. [Online]. Available: https://doi.org/10.1016/j.biortech.2014.01.018
  • L. S. Cadavid and N. Horan, "Methane production and hydrolysis kinetics in the anaerobic degradation of wastewater screenings," Water Science and Technology, vol. 68, no. 2, 2013. [Online]. Available: https://doi.org/10.2166/wst.2013.267
  • Y. Li, Y. Chen, and J. Wu, "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, vol. 240, Apr. 15, 2019. [Online]. Available: https://doi.org/10.1016/j.apenergy.2019.01.243
  • E. Comino, V. A. Riggio, and M. Rosso, "Biogas production by anaerobic co-digestion of cattle slurry and cheese whey," Bioresource Technology, vol. 114, Jun. 2012. [Online]. Available: https://doi.org/10.1016/j.biortech.2012.02.090
  • L. Castrillón, Y. F. Nava, P. Ormaechea, and E. Marañón, "Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in cstr and ibr," Bioresource Technology, vol. 127, Jan. 2013. [Online]. Available: https://doi.org/10.1016/j.biortech.2012.09.080
  • T. Amon, B. Amon, V. Kryvoruchko, W. Zollitsch, and K. M. et al., "Biogas production from maize and dairy cattle manure-influence of biomass composition on the methane yield," Agriculture, Ecosystems and Environment, vol. 118, no. 1-4, Jan. 2007. [Online]. Available: https://doi.org/10.1016/j.agee.2006.05.007
  • G. K. Kafle and L. Chen, "Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (bmp) using different statistical models," Waste Management, vol. 48, Feb. 2016. [Online]. Available: https://doi.org/10.1016/j.wasman.2015.10.021
  • M. Garfí, L. F. Martí, I. Perez, X. Flotats, and I. Ferrer, "Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude," Ecological Engineering, vol. 37, no. 12, Dec. 2011. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2011.08.018
  • N. D. Miranda, R. Granell, H. L. Tuomisto, and M. D. McCulloch, "Meta-analysis of methane yields from anaerobic digestion of dairy cattle waste," Biomass and Bioenergy, vol. 86, Mar. 2016. [Online]. Available: https://doi.org/10.1016/j.biombioe.2016.01.012
  • C. Zhang, H. Su, J. Baeyens, and T. Tan, "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, vol. 38, Oct. 2014. [Online]. Available: https://doi.org/10.1016/j.rser.2014.05.038
  • I. Siegert and C. Banks, "The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors," Process Biochemistry, vol. 40, no. 11, Nov. 2005. [Online]. Available: https://doi.org/10.1016/j.procbio.2005.01.025
  • O. Yenigün and B. Demirel, "Ammonia inhibition in anaerobic digestion : A review," Process Biochemistry, vol. 48, no. 5-6, 2013. [Online]. Available: https://doi.org/10.1016/j.procbio.2013.04.012
  • L. Castro, H. Escalante, J. J. Estévez, L. J. Díaz, K. Vecino, and et al., "Low cost digester monitoring under realistic conditions : Rural use of biogas and digestate quality," Bioresource Technology, vol. 239, Sep. 2017. [Online]. Available: https://doi.org/10.1016/j.biortech.2017.05.035
  • M. Garfí, J. M. Herrero, A. Garwood, and I. Ferrer, "Household anaerobic digesters for biogas production in latin america: A review," Renewable and Sustainable Energy Reviews, vol. 60, Jul. 2016. [Online]. Available: https://doi.org/10.1016/j.rser.2016.01.071
  • E. Comino, M. Rosso, and V. Riggio, "Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix," Bioresource Technology, vol. 100, no. 21, Nov. 2009. [Online]. Available: https://doi.org/10.1016/j.biortech.2009.05.059
  • R. Rajagopal, D. I. Massé, and G. Singh, "A critical review on inhibition of anaerobic digestion process by excess ammonia," Bioresource Technology, vol. 143, Sep. 2013. [Online]. Available: https://doi.org/10.1016/j.biortech.2013.06.030
  • S. Lansing, J. F. Martin, R. B. Botero, T. N. Silva, and E. D. Silvac, "Methane production in low-cost, unheated, plug-flow digesters treating swine manure and used cooking grease," Bioresource Technology, vol. 101, no. 12, Jun. 2010. [Online]. Available: https://doi.org/10.1016/j.biortech.2010.01.100
  • T. Perrigault, V. Weatherford, J. M. Herrero, and D. Poggio, "Towards thermal design optimization of tubular digesters in cold climates: a heat transfer model," Bioresource Technology, vol. 124, Nov. 2012. [Online]. Available: https://doi.org/10.1016/j.biortech.2012.08.019