There is a newer version of the record available.

Published May 5, 2023 | Version v3
Preprint Open

Properties of Gauss Hypergeometric function, 2F1, of special parameters

  • 1. Gwangju Institute of Science and Technology

Description

This paper studies some properties of Gauss Hypergeometric function, \({}_2F_1(a, b, c; -t^{2n})\),of specific parameters \(a= 1/2n, b \geq 0, c = 1/2n +1, n \in \mathbb{N}^+ \) . Generating equation is presented and basic properties, monotonicity, bounded range, and inequality are discussed. With these parameters, \({}_2F_1\) is monotonic decreasing function for \(|t|\) value, bounded on  range and \({}_2F_1(, b_1,) > {}_2F_1(, b_2,), \forall 0 \leq b_1 < b_2, b_1, b_2 \in \mathbb{R}\).

Files

PROPERTIES_OF_GAUSS_HYPERGEOMETRIC_FUNCTIONS_OF_SPECIFIC_PARAMETERS.pdf

Files (149.5 kB)