Published April 1, 2023 | Version 1
Journal article Open

Antibiotics Usage in Aquaculture-An Overview

  • 1. Department of Biotechnology, Vikrama Simhapuri University, Nellore-524 324, Andhra Pradesh, India

Description

Abstract
Antibiotics are used in aquaculture to maintain the health and welfare of stocks; however, the emergence and selection of antibiotic resistance in bacteria poses threats to humans, animals, and the environment. Mitigation of antibiotic resistance relies on understanding the flow of antibiotics, residues, resistant bacteria, and resistance genes through interconnecting systems, so that potential solutions can be identified and issues around their implementation evaluated. Antibiotics are introduced into the aquaculture system via direct application for example in medicated feed, but residues may also be introduced into the system through agricultural drainage water, which is the primary source of water for most fish cultured farms. The approach taken in the present study provides a means to identify points in the system where the effectiveness of interventions can be evaluated and thus it may be applied to other food production systems to combat the problem of antibiotic resistance. Oxytetracycline (OTC) is a tetracycline broad-spectrum antibiotic being widely used in aquaculture as a therapeutic and prophylactic agent ever since it was first approved by USFDA for use in finfish aquaculture. The indiscriminate use of oxytetracycline has led to a lot of problems such as the emergence of antibiotic‐resistant bacteria in aquaculture environments which in turn transfer these resistance factors to bacteria of terrestrial animals and human pathogens. Moreover, it can also create problems for industrial health as antibiotic residues can get accumulated in fish meat and fish products. Residues of antibiotics also result in lowering the marketing and export value of aquaculture products. This review article highlights the present scenario of increasing antimicrobial-resistance in pathogenic bacteria and the clinical importance of unconventional or non-antibiotic therapies to thwart the infectious pathogenic microorganisms.

Notes

FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome: FAO. 2. Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., Buschmann, A.H., (2013). Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942. 3. Zhao, Y., Yang, Q.E., Zhou, X., Wang, F.H., Muurinen, J., Virta, M.P., et al., (2020a). Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Crit. Rev. Environ. Sci. Technol. 51, 2159–2196. 4. Watts, J. E. M., Schreier, H. J., Lanska, L. & Hale, M. S. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar. Drugs 15, 158 (2017). 5. Shen, Y., Zhou, H., Xu, J., Wang, Y., Zhang, Q., Walsh, T. R., Shao, B., Wu, C., Hu, Y., Yang, L., Shen, Z., Wu, Z., Sun, Q., Ou, Y., Wang, Y., Wang, S., Wu, Y., Cai, C., Li, J., … Wang, Y. (2018). Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nature Microbiology, 3(9), 1054–1062. 6. Reverter, M., Sarter, S., Caruso, D., Avarre, J.C., Combe, M., Pepey, E., et al., (2020). Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 11, 1–8. 7. Sørum, H., Miller, R.A., Harbottle, H., (2019). Antimicrobial drug resistance in fish pathogens. Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC, USA, pp. 213–238. 8. Schar, D., Zhao, C., Wang, Y., Larsson, D.G.J., Gilbert, M., Van Boeckel, T.P., 2021. (2021) twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia.Nat. Commun. 121 (12), 1–10. 9. Henriksson, P.J.G., Rico, A., Troell, M., Klinger, D.H., Buschmann, A.H., Saksida, S., Chadag, M.V., Zhang, W., (2018). Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain. Sci. 13, 1105–1120. 10. Schar D, Klien EY, Laxminarayan R, Gilbert M, Van Boeckel T (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, Nature 10:21878. DOI: 10.1038/s41598-020-78849- 11. Thornber K, Verner-Jeffreys D, Hinchiffle S, Meezanur Rahman M, Bass D, Tyler CR (2020) evaluating antimicrobial resistance in the global shrimp industry. Rev. Aquac. 12: 966-986. 12. Maite, C.; Peral, I.P.; Ramos, S.; Basurco, B.; López-Francos, M.A.; Cavallo, M.; Perez, J.; Aguilera C.; Fu-rones, D.; Reverté, C.; et al. Deliverable 1.2 of the Horizon (2020) Project MedAID (GA number 727315). Available online: https://archimer.ifremer.fr/doc/00515/62630 (accessed on 5 January 2021). 13. Cassini, A., L.D. Högberg, D. Plachouras, A. Quattrocchi, A. Hoxha, G.S. Simonsen, M. Colomb-Cotinat, M. E. Kretzschmar, B. Devleesschauwer, M. Cecchini, D.A. Ouakrim, T.C. Oliveira, M.J. Struelens, C. Suetens, and D.L. Monnet. (2019). "Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis." Lancet Infect. Dis. 19: 56–66. 14. WHO, OIE, FAO, (2020). International instruments on the use of antimicrobials across the human, animal and plant sectors. 15. Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norstr ̈om, M., Pons, M.-N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., Martinez, J.L., 2015. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 13, 310. 16. Ter Kuile, B.H., Kraupner, N., Brul, S., 2016. The risk of low concentrations of antibiotics in agriculture for resistance in human health care. FEMS Microbiol. Lett. 363. 17. Hernando-Amado, S., Coque, T.M., Baquero, F., Martínez, J.L., (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442. 18. European Commission, 2019. Strategic approach to pharmaceuticals in the environment. Fairbairn, D.J., Karpuzcu, M.E., Arnold, W.A., Barber, B.L., Kaufenberg, E.F. Koskinen, W.C., Novak, P.J., Rice, P.J., Swackhamer, D.L., 2016. Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Sci. Total Environ.551–552, 605–613. 19. Munkholm, L., Rubin, O., Bækkeskov, E., Humboldt-Dachroeden, S., 2021. Attention to the Tripartite's one health measures in national action plans on antimicrobial resistance. J. Public Health Policy 42, 236–248 20. McKinney, C.W., Dungan, R.S., Moore, A., Leytem, A.B., (2018). Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiol. Ecol. 94. 21. Quintela-Baluja, M., Abouelnaga, M., Romalde, J., Su, J.Q., Yu, Y., Gomez-Lopez, M., Smets, B., Zhu, Y.G., Graham, D.W., (2019). Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Res. 162, 347–357. 22. Watts, J. E. M., Schreier, H. J., Lanska, L. & Hale, M. S. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar. Drugs 15, 158 (2017). 23. Robinson, T.P., Bu, D.P., Carrique-Mas, J., F`evre, E.M., Gilbert, M., Grace, D., Hay, S.I., Jiwakanon, J., Kakkar, M., Kariuki, S., Laxminarayan, R., Lubroth, J., Magnusson, U., Thi Ngoc, P., Van Boeckel, T.P., Woolhouse, M.E.J., (2016). Antibiotic resistance is the quintessential one health issue. Trans. R. Soc. Trop. Med. Hyg. 110, 377–380. 24. Rico, A., Phu, T.M., Satapornvanit, K., Min, J., Shahabuddin, A.M., Henriksson, P.J.G., Murray, F.J., Little, D.C., Dalsgaard, A., Van den Brink, P.J., (2013). Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 412-413, 231–243. 25. DONE, H.Y.; VENKATESAN, A.K.; HALDEN, R.U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? The AAPS Journal, Arlington, v.17, n.3, p.513- 524, (2015). 26. Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640–663. 27. Partridge, G., (2016). Testing the efficacy of probiotics for disease control in aquaculture. Microbiol. Austral. 37, 122–123. 28. Knipe, H., Temperton, B., Lange, A., Bass, D., Tyler, C.R., (2020). Probiotics and Competitive Exclusion of Pathogens in Shrimp Aquaculture (Reviews in Aquaculture n/a). 29. Liu WC, Zhou SH, Balasubramanian B, Zeng FY, Sun CB, Pang HY. Dietary seaweed (Enteromorpha) polysaccharide improves growth performance involved in regulation of immune responses, intestinal morphology and microbial community in banana shrimp Fenneropenaeus merguiensis. Fish Shellfish Immun. (2020) 104:202–12. 30. Shao Y, Wang Y, Yuan Y, Xie Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci Total Environ. (2021) 798:149205. 31. Jindal P, Bedi J, Singh R, Aulakh R, Gill J. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli and Klebsiella isolated from dairy farm milk, farm slurry and water in Punjab, India. Environ Sci Pollut Res. (2021) 28:28556–70. 32. Zhang, X., Li, X., Wang, W., Qi, J., Wang, D., Xu, L., et al. (2020). Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli From Intensive Farming Swine in Four Provinces of China. Front. Microbiol. 11:565349. 33. Al-Tawfiq JA, Rabaan AA, Saunar JV, Bazzi AM. Antimicrobial resistance of gram-negative bacteria: a six-year longitudinal study in a hospital in Saudi Arabia. J Infect Public Health. (2020) 13:737–45. 34. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. antimicrobial resistance in Escherichia coli. Microbiol Spectr. (2018) 6:14. 35. Murray, A.K., Stanton, I.C., Wright, J., Zhang, L., Snape, J., Gaze, W.H., 2020. The 'Selection End points in Communities of bacTeria' (SELECT) method: a novel experimental assay to facilitate risk assessment of selection for antimicrobial resistance in the environment. Environ. Health Perspect. 128, 107007. 36. Singh, R., Singh, A. P., Kumar, S., Giri, B. S., & Kim, K.‐H. (2019). Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. Journal of Cleaner Production, 234, 1484–1505. 37. Kim, D.‐W., & Cha, C.‐J. (2021). Antibiotic resistome from the One‐Health perspective: Understanding and controlling antimicrobial resistance transmission. Experimental & Molecular Medicine, 53(3), 301–309. 38. Impens, S., W. Reybroeck, J. Vercammen, D. Courtheyn, S. Ooghe, K. De Wasch, and H. De Brabander (2003). Screening and confirmation of chloramphenicol in shrimp tissue using ELISA in combination with GC–MS2 and LC–MS2. Analytica Chimica Acta 483: 153-163. 39. Bakar, M., Morshed, A., Islam, F., & Karim, R. (2013). Screening of chloramphenicol residues in chickens and fish in Chittagong city of Bangladesh. Bangladesh Journal of Veterinary Medicine, 11, 173–175. 40. Shimizu A., H. Takada, T. Koike et al. (2013). Ubiquitous occurrence of sulfonamides in tropical Asian waters. Science of the Total Environment 358: 108-115.

Files

29-49-Vijay Anand Gundi-9901481163.pdf

Files (578.2 kB)

Name Size Download all
md5:0661f50a6aa273022a2adbae205dd9a5
578.2 kB Preview Download