Published June 5, 2023 | Version v. 1.0
Software Open

The Story Map Building and Visualization Tool (SMBVT)

Description

Main investigator and manager: Valentina Bartalesi

Project collaborators: Valentina Bartalesi, Nicolò Pratelli, Emanuele Lenzi

Developers: Emanuele Lenzi, Daniele Metilli (for the previous NBVT)

The Story Map Building and Visualization Tool (SMBVT) is semi-automatic tool to construct and visualise narratives, intended as semantic networks of events related to each other through semantic relations, in form of story maps and timeline. The tool was developed as an extension of a previously developed tool called Narrative Building and Visualisation Tool (NBVT - http://dlnarratives.eu/tool/index.html). SMBVT, like NBVT does, obeys an ontology for narratives we developed.

If you use SMBVT as support to your research consider citing:

Valentina Bartalesi, Emanuele Lenzi, Nicolò Pratelli, A Web Tool to Create and Visualise Semantic Story Maps, Proceedings of Text2Story — Sixth Workshop on Narrative Extraction From Texts, Dublin, Ireland, April 2, 2023.

Valentina Bartalesi, Gianpaolo Coro, Emanuele Lenzi, Pasquale Pagano & Nicolò Pratelli (2023) From unstructured texts to semantic story maps, International Journal of Digital Earth, 16:1, 234-250, DOI: 10.1080/17538947.2023.2168774

Meghini C., Bartalesi V., Metilli D. Representing narratives in digital libraries: The narrative ontology. In: Semantic Web, vol. 12, no. 2, pp. 241-264, 2021.

Metilli D., Bartalesi V., Meghini C. A Wikidata-based tool for building and visualising narratives. In: International Journal on Digital Libraries, vol. Springer, 2019.

Metilli D., Bartalesi V., Meghini C. Populating narratives using Wikidata events: an initial experiment. In: Digital Libraries: Supporting Open Science. 15th Italian Research Conference on Digital Libraries, pp. 159 - 166. Manghi P., Candela L., Silvello G. (eds.). (Communications in Computer and Information Science, vol. 988). Pisa: Springer, 2019.

Files

EmanueleLenzi92/SMBVT-SMBVT.zip

Files (7.4 MB)

Name Size Download all
md5:34d33a2f0ad453e1749c57dc4f1406f4
7.4 MB Preview Download

Additional details

Related works