Aplicaciones de Klebsiella variicola y uso potencial en la producción agrícola
- 1. Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Ciudad Universitaria, C. P. 72592, Colonia Jardines de San Manuel, Puebla, Puebla, México.
- 2. Grupo "Ecology and Survival of Microorganisms", Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
Description
RESUMEN
Las actividades humanas sobre el medio ambiente han sido el principal motor del cambio climático, debido a la quema de combustibles fósiles que producen gases de efecto invernadero que atrapan el calor en la atmósfera de la tierra con efectos directos a la diversidad biológica. Además, la contaminación con metales y efluentes industriales no tratados en los suelos, pone en peligro a los seres humanos y a la biosfera al reducir el rendimiento agrícola y afectar negativamente la salud del ecosistema. En este contexto, las bacterias promotoras del crecimiento vegetal cumplen funciones específicas en procesos biogeoquímicos, interactúan con las plantas promoviendo su crecimiento, establecen protección contra fitopatógenos, aumentan la disponibilidad de nutrientes, el nivel de fertilidad del suelo y se han introducido ampliamente en las plantas para mejorar la productividad agrícola o la eficiencia de la fitorremediación de suelos contaminados. Entre estas especies, se destaca el género Klebsiella, principalmente K. variicola, una bacteria que es capaz de colonizar diferentes hospederos, fijar nitrógeno en la rizósfera del suelo, incrementar el desarrollo de las plantas y puede remover algunos contaminantes; debido a esto, puede considerarse como una bacteria con potencial biotecnológico. En esta revisión se compiló literatura científica producida sobre las aplicaciones de K. variicola en la producción de fuentes de energía renovable, como agente activo o en consorcio para la biorremediación y la producción agrícola en diferentes cultivos.
ABSTRACT
Human activities on the environment have been the main driver of climate change, due to the burning of fossil fuels that produce greenhouse gases that trap heat in the earth's atmosphere with direct effects on biological diversity. Besides, contamination with metals and untreated industrial effluents in soils endangers humans and the biosphere by reducing agricultural yields and negatively affecting ecosystem health. In this context, plant growth promoting bacteria, fulfil specific functions in biogeochemical processes, interact with plants promoting their growth, establish protection against phytopathogens, increase nutrients availability, soil fertility level and have been widely introduced in plants to improve agricultural productivity or the efficiency of phytoremediation of contaminated soils. Among these species, the genus Klebsiella stands out, mainly K. variicola, a bacterium capable of colonizing different hosts, perform nitrogen fixation in the rhizosphere soil, increasing the development of plants and this bacterium can remove some pollutants; due to this, it can be considered as a bacterium with technological potential. In this review compile scientific literature produced on the applications of K. variicola in the production of renewable energy sources, as an active agent or in a consortium for bioremediation and agricultural production in different crops.
Files
Pancho & Muñoz, 2023.pdf
Files
(732.4 kB)
Name | Size | Download all |
---|---|---|
md5:2cff786fa0f20d8df68abdaf3b4615c2
|
732.4 kB | Preview Download |
Additional details
Identifiers
Related works
- Is identical to
- Journal article: https://www.aytbuap.mx/aytbuap-830/aplicaciones-de-klebsiella-variicola-y-uso-potencial (URL)
References
- Rosenblueth M, Martínez L, Silva J, Martínez-Romero E. Klebsiella variicola, A Novel Species with Clinical and Plant-Associated Isolates. Systematic and Applied Microbiology. 2004;27(1):27–35. Disponible en: https://doi.org/10.1078/0723-2020-00261
- Lin L, Wei C, Chen M, Wang H, Li Y, Yang L, An Q. Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. Standards in Genomic Sciences. 2015;10:22. Disponible en: https://doi.org/10.1186/s40793-015-0004-2
- Fonseca EL, Ramos N da V, Andrade BG, Morais LL, Marin MF, Vicente AC. A one-step multiplex PCR to identify Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae in the clinical routine. Diagnostic Microbiology and Infectious Disease. 2017;87(4):315–317. Disponible en: https://doi.org/10.1016/j.diagmicrobio.2017.01.005
- Brisse S, Passet V, Grimont PAD. Description of Klebsiella quasipneumoniae sp. nov., Isolated from human infections, With two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. International Journal of Systematic and Evolutionary Microbiolgy. 2014; 64(Part 9):3146–3152. Disponible en: https://doi.org/10.1099/ijs.0.062737-0
- Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U. Klebsiella variicola: an emerging pathogen in humans. Emerging Microbes and Infections. 2019;8(1):973–988. Disponible en: https://doi.org/10.1080/22221751.2019.1634981
- Barrios-Camacho H, Aguilar-Vera A, Beltran-Rojel M, Aguilar-Vera E, Duran-Bedolla J, Rodriguez-Medina N, et al. Molecular epidemiology of Klebsiella variicola obtained from different sources. Scientific Reports. 2019;9(1),10610. Disponible en: https://doi.org/10.1038/s41598-019-46998-9
- Martínez-Romero E, Rodríguez-Medina N, Beltrán-Rojel M, Silva-Sánchez J, Barrios-Camacho H, Pérez-Rueda E, et al. Genome misclassification of Klebsiella variicola and Klebsiella quasipneumoniae isolated from plants, animals and humans. Salud Publica de Mexico. 2018;60(1):56–62. Disponible en: https://doi.org/10.21149/8149
- Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Scientific Reports. 2016;6:26710. Disponible en: https://doi.org/10.1038/srep26710
- Kim AY, Shahzad R, Kang SM, Seo CW, Park YG, Park HJ, et al. IAA-producing Klebsiella variicola AY13 reprograms soybean growth during flooding stress. Journal of Crop Science and Biotechnology. 2017;20(4):235–242. Disponible en: https://doi.org/10.1007/s12892-017-0041-0
- Marag PS, Suman A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiological Research. 2018;214:101–113. Disponible en: https://doi.org/10.1016/j.micres.2018.05.016
- Nava-Faustino G, Ramírez-Rojas S, Palemón-Alberto F, Orbe Díaz D, Forero-Forero ÁV, Toribio-Jiménez J. In vivo translocation of Klebsiella variicola PB02 and Klebsiella quasipneumoniae HPA43 in fruits of Solanum lycopersicum cultivar DT-22. Revista Mexicana de Ciencias Agrícolas. 2022;13(5):799–811. Disponible en: https://doi.org/10.29312/remexca.v13i5.2880
- Potter RF, Lainhart W, Twentyman J, Wallace MA, Wang B, Burnham CAD, et al. Population structure, antibiotic resistance, and uropathogenicity of Klebsiella variicola. mBio. 2018;9(6):2481-2518. Disponible en: https://doi.org/10.1128/mBio.02481-18
- Imai K, Ishibashi N, Kodana M, Tarumoto N, Sakai J, Kawamura T, et al. Clinical characteristics in blood stream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: a comparative study, Japan, 2014-2017. BMC Infectious Diseases. 2019;19(1):946. Disponible en: https://doi.org/10.1186/s12879-019-4498-x
- Chilakamarry CR, Sakinah AM, Zularisam AW, Pandey A, Vo DVN. Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. Environmental Technology and Innovation. 2021;24:101902. Disponible en: https://doi.org/10.1016/j.eti.2021.101902
- Alalwan HA, Alminshid AH, Aljaafari HAS. Promising evolution of biofuel generations. Subject review. Renewable Energy Focus. 2019;28:127–139. Disponible en: https://doi.org/10.1016/j.ref.2018.12.006
- Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP. Sustainability of the four generations of biofuels – A review. International Journal of Energy Research. 2020;44(12):9266–9282. Disponible en: https://doi.org/10.1002/er.5557
- Chilakamarry CR, Sakinah AMM, Zularisam AW, Pandey A. Glycerol waste to value added products and its potential applications. Systems Microbiology and Biomanufacturing. 2021;1(4):378–396. Disponible en: https://doi.org/10.1007/s43393-021-00036-w
- Rahman MS, Xu C, Ma K, Guo H, Qin W. Utilization of by-product glycerol from bio-diesel plants as feedstock for 2,3-butanediol accumulation and biosynthesis genes response of Klebsiella variicola SW3. Renewable Energy. 2017;114(Part B):1272–1280. Disponible en: https://doi.org/10.1099/ijs.0.062737-0
- Suzuki T, Nishikawa C, Seta K, Shigeno T, Nakajima-Kambe T. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions. New Biotechnology. 2014;31(3):246–253. Disponible en: https://doi.org/10.1016/j.nbt.2014.03.005
- Suzuki T, Seta K, Nishikawa C, Hara E, Shigeno T, Nakajima-Kambe T. Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering. Bioresource Technology. 2015;176:156–162. Disponible en: https://doi.org/10.1016/j.biortech.2014.10.153
- Seta K, Suzuki T, Kiyoshi K, Shigeno T, Nakajima-Kambe T. Potential use of methane fermentation digested slurry as a low-cost, environmentally-friendly nutrient for bioethanol production from crude glycerol by Klebsiella variicola TB-83D. New Biotechnology. 2018;44:1–5. Disponible en: https://doi.org/10.1016/j.nbt.2018.02.014
- Baghaie AH, Aghili F. Health risk assessment of Pb and Cd in soil, wheat, and barley in Shazand County, central of Iran. Journal of Environmental Health Science and Engineering. 2019;17(1):467–477. Disponible en: https://doi.org/10.1007/s40201-019-00365-y
- Wani AL, Ara A, Usmani JA. Lead toxicity: A review. Interdisciplinary Toxicology. 2015;8(2):55–64. Disponible en: https://doi.org/10.1515/intox-2015-0009
- Das A, Osborne JW. Enhanced bioremoval of lead by earthworm–Lumbricus terrestris co-cultivated with bacteria–Klebsiella variicola. Journal of Photochemistry and Photobiology. B, Biology. 2017;175:65–72. Disponible en: https://doi.org/10.1016/j.jphotobiol.2017.08.031
- Das A, Osborne JW. Enhanced Lead Uptake by an Association of Plant and Earthworm Bioaugmented with Bacteria. Pedosphere. 2018;28(2):311–322. Disponible en: https://doi.org/10.1016/S1002-0160(18)60021-9
- Eslami H, Shariatifar A, Rafiee E, Shiranian M, Salehi F, Hosseini SS, et al. Decolorization and biodegradation of reactive Red 198 Azo dye by a new Enterococcus faecalis–Klebsiella variicola bacterial consortium isolated from textile wastewater sludge. World Journal of Microbiology & Biotechnology, 35(3): 38. Disponible en: https://doi.org/10.1007/s11274-019-2608-y
- Salazar-Ledesma M, Mora L, Chávez B, Gómez D, Zamor O, Prado B. Susceptibilidad del suelo al impacto humano: Caso del herbicida atrazina. Boletín de la Sociedad Geológica Mexicana. 2018;70(1):95–119. Disponible en: https://doi.org/10.18268/bsgm2018v70n1a6
- Bejarano GF, Aguilera MD, Álvarez SJD, Arámbula ME, Arellano AO, et al. Los Plaguicidas Altamente Peligrosos en México. 2017. Disponible en: https://conacyt.mx/cibiogem/images/cibiogem/Documentos-recopilatorios-relevantes/Los_PAP_en_Mxico.pdf
- Gao N, Zhang J, Pan Z, Zhao X, Ma X, Zhang H. Biodegradation of Atrazine by Mixed Bacteria of Klebsiella variicola Strain FH-1 and Arthrobacter sp. NJ-1. Bulletin of Environmental Contamination and Toxicology. 2020;105(3):481–489. Disponible en: https://doi.org/10.1007/s00128-020-02966-y
- Santoyo de la Cruz MF, Flores Magdaleno H, Khalil-Gardezi A, Mancilla-Villa ÓR, Rubiños-Panta JE. Composición iónica y comparación de índices de salinidad de suelo agrícola de Texcoco, México. Nova Scientia. 2021;13(27). Disponible en: https://doi.org/10.21640/ns.v13i27.2789
- Ahluwalia O, Singh PC, Bhatia R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability. 2021;5:100032. Disponible en: https://doi.org/10.1016/j.resenv.2021.100032
- Moreno RA, García MV, Reyes CJL, Vásquez AJ, Cano RP. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83. Disponible en: https://doi.org/10.15446/rev.colomb.biote.v20n1.73707
- Posada Castaño AM, Mejía Durango DP, Polanco-Echeverry D, Cardona-Arias JA. Rizobacterias promotoras de crecimiento vegetal (PGPR): una revisión sistemática 1990-2019. Revista de Investigación Agraria y Ambiental. 2021;12(2):161–178. Disponible en: https://doi.org/10.22490/21456453.4040
- Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, et al. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Frontiers in plant science. 2016; 7:876. Disponible en: https://doi.org/10.3389/fpls.2016.00876
- Chávez-Díaz IF, Zelaya Molina LX, Cruz Cárdenas IC, Rojas Anaya E, Ruíz Ramírez S, de los Santos Villalobos S. Consideraciones sobre el uso de biofertilizantes como alternativa agro-biotecnológica sostenible para la seguridad alimentaria en México. Revista Mexicana de Ciencias Agrícolas. 2020;11(6):1423-1436. Disponible en: https://doi.org/10.29312/remexca.v11i6.2492
- Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, et al. Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules. 2021;26(7) 1894. Disponible en: https://doi.org/10.3390/molecules26071894
- Yang L, Yang K. Biological function of Klebsiella variicola and its effect on the rhizosphere soil of maize seedlings. PeerJ. 2020;8: 9894. Disponible en: https://doi.org/10.7717/peerj.9894
- Gou W, Tian LI, Ruan Z, Zheng P, Chen F, Zhang L, et al. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pakistan Journal of Botany. 2015;47(2): 581-586. Disponible en: https://inis.iaea.org/search/search.aspx?orig_q=RN:46056657
- Guato-Molina JJ, Auhing-Arcos JA, Crespo-Ávila JA, Esmeraldas-García GA, Mendoza-León AF, Canchignia-Martínez HF. Plant growth promoting bacteria with potential biocontrol agent of Fusarium oxysporum f. Sp. lycopersici, and Moniliophthora roreri. Scientia Agropecuaria. 2019;10(3):393–402. Disponible en: https://doi.org/10.17268/sci.agropecu.2019.03.10
- Huarhua M, Aragón L, Flores J, Tsuzuki R, Arie T. Primer reporte de Fusarium oxysporum f. sp. lycopersici raza 1 aislada de tomate (Solanum lycopersicum L.) proveniente de la Costa central del Perú. Scientia Fungorum. 2020;50:1257. Disponible en: https://doi.org/10.33885/sf.2020.50.1257
- Arbaugh BM, Rezaei F, Mohiti-Asli M, Pena S, Scher HB, Jeoh T. A Strategy for Stable, On-Seed Application of a Nitrogen-Fixing Microbial Inoculant by Microencapsulation in Spray-Dried Cross-linked Alginates. ACS Agricultural Science and Technology. 2022; 2(5), 950-959. Disponible en: https://doi.org/10.1021/acsagscitech.2c00107
- Zhang C, Kong F. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology. 2014;82:18–25. Disponible en: https://doi.org/10.1016/j.apsoil.2014.05.002
- Wei CY, Lin L, Luo LJ, Xing YX, Hu CJ, Yang LT, et al. Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biology and Fertility of soils. 2014; 50: 657-666. Disponible en: https://doi.org/10.1007/s00374-013-0878-3
- Defez R, Andreozzi A, Bianco C. The Overproduction of Indole-3-Acetic Acid (IAA) in Endophytes Upregulates Nitrogen Fixation in Both Bacterial Cultures and Inoculated Rice Plants Microbial Ecology. 2017;74(2): 441-452. Disponible en: https://doi.org/10.1007/s00248-017-0948-4
- Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, et al. Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant. Frontiers in Plant Science. 2021;12: 660620. Disponible en: https://doi.org/10.3389/fpls.2021.660620
- Kusale SP, Attar YC, Sayyed RZ, el Enshasy H, Hanapi SZ, Ilyas N, et al. Inoculation of Klebsiella variicola alleviated salt stress and improved growth and nutrients in wheat and maize. Agronomy. 2021;11(5):927. Disponible en: https://doi.org/10.3390/agronomy11050927
- Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S. Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific reports. 2020;10(1): 4916. Disponible en: https://doi.org/10.1038/s41598-020-61846-x
- Rios-Galicia B, Villagómez-Garfias C, de la Vega-Camarillo E, Guerra-Camacho JE, Medina-Jaritz N, Arteaga-Garibay RI, et al. The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech. 2021;11(10):447. Disponible en: https://doi.org/10.1007/s13205-021-02983-6
- Yi W, Jin Y, Fei W, Yanhong Q, Xuemeng L, Chuantao Lu, et al. Klebsiella variicola capable of generating IAA and promoting growth of salvia miltiorrhiza and application thereof. CN112852661A. 2021.
- Zuhong L, Rong Z, Guosong W, Mingfu Z, Xuanzhi L, Ruiqin Z. Plant endophytic bacterium SH-1 and application thereof. CN103484399A. 2014.
- Mingfu Z, Guosong W, Shaozhong X, Mengjiao L. Aplication of Klebsiella variicola SH-1 strain. CN104351255A. 2015.
- Zhongfeng Z, Guoming S, Bingqiao Z, Qingcheng L, Lin G, Yuqin Z, et al. Klebsiella variicola with potassium release function, and culture method and application thereof. CN103031260A. 2012.
- Xiang W, Bingcheng G, Zhongqian H, Liyuan X, Weihong P, Hao T, et al. Microbial composition for promoting tobacco growth and use. CN106434471A. 2017.
- Herrera Rodríguez L. N., Mora Cura Y. N., Cortes Salas R. A. Method for obtaining indole acetic acid by means of microbial fermentation. WO2021177812A1. 2021.
- Lijuan Y., Kejun Y., Yufeng W. A method for improving saline-alkali tolerance of maize seedlings and improving physical and chemical properties of rhizosphere soil of maize seedlings. AU2020104315A4. 2021.
- Mushtaq Z. PGPR: present role, mechanism of action and future prospects along bottlenecks in commercialization. EQA-International Journal of Environmental Quality. 2020;41:9-15. Disponible en: https://doi.org/10.6092/issn.2281-4485/11103
- Martínez-Romero E, Rodríguez-Medina N, Beltrán-Rojel M, Toribio-Jiménez J, Garza-Ramos U. Klebsiella variicola and Klebsiella quasipneumoniae with capacity to adapt to clinical and plant settings. Salud Pública de México. 2018;60(1):29–40. Disponible en: https://doi.org/10.21149/8156
- Guo Y, Zhai Y, Zhang Z, Li D, Wang Z, Li J, et al. Complete genomic analysis of a kingdom-crossing Klebsiella variicola isolate. Frontiers in Microbiology. 2018;9:2428. Disponible en: https://doi.org/10.3389/fmicb.2018.02428