Evaluation and comparison of the degradability and compressive and tensile properties of 3D printing polymeric materials: PLA, PETG, PC, and ASA
Creators
- 1. Universidad Tecnológica del Perú, Av. Tacna y Arica 160, 04001 Arequipa, Peru
Description
The compressive and tensile properties of polylactic acid (PLA), polyethylene terephthalate glycol (PETG), polycarbonate (PC), and acrylonitrile styrene acrylate (ASA) were evaluated. In addition, changes in the tensile properties because of the degradability of the polymers, under simulated marine environment conditions, were studied. Among the non-degraded materials, it was found that PC and PLA are the ones with the highest resistance to compression and tension. After the degradation, it was found that PC and PETG have better mechanical properties of toughness and resistance; therefore, among the polymers studied, they are the more appropriate materials for applications in marine environment conditions.
Files
Additional details
References
- S. Chen, J. Lu, J. Feng, 3D-printable ABS blends with improved scratch resistance and balanced mechanical performance. Ind. Eng. Chem. Res. 57(11), 3923–3931 (2018). https://doi.org/10.1021/acs.iecr.7b05074
- L. Santana, J.L. Alves, A.C. da Sabino Netto, C. Merlini, Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, química e mecânica. Matéria (Rio Janeiro) (2018). https://doi.org/10. 1590/s1517-707620180004.0601
- X. Zhang, L. Chen, T. Mulholland, T.A. Osswald, Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling. SN Appl. Sci. 1(6), 616 (2019). https://doi.org/10.1007/s42452-019-0639-5
- A.M. Oviedo, A.H. Puente, C. Bernal, E. Pérez, Mechanical evaluation of polymeric flaments and their corresponding 3D printed samples. Polym. Test. 88, 106561 (2020). https://doi.org/10.1016/j.polymertesting.2020. 106561
- N.G. Tanikella, B. Wittbrodt, J.M. Pearce, Tensile strength of commercial polymer materials for fused flament fabrication 3D printing. Addit. Manuf. 15, 40–47 (2017). https://doi.org/10.1016/j.addma.2017.03.005
- A.M. Peterson, Review of acrylonitrile butadiene styrene in fused flament fabrication: a plastics engineering-focused perspective. Addit. Manuf. 27, 363–371 (2019). https://doi.org/10.1016/j.addma.2019.03.030
- S. Chong, T.C.-K. Yang, K.-C. Lee, Y.-F. Chen, J.C. Juan, T.J. Tiong, C.-M. Huang, G.-T. Pan, Evaluation of the physico-mechanical properties of activated-carbon enhanced recycled polyethylene/polypropylene 3D printing flament. Sādhanā 45(1), 57 (2020). https://doi.org/10.1007/ s12046-020-1294-7
- C. Grabowik, K. Kalinowski, G. Ćwikła, I. Paprocka, P. Kogut, Tensile tests of specimens made of selected group of the flament materials manufactured with FDM method. MATEC Web Conf. 112, 04017 (2017). https:// doi.org/10.1051/MATECCONF/201711204017
- S. Guessasma, S. Belhabib, H. Nouri, Microstructure, thermal and mechanical behavior of 3D printed acrylonitrile styrene acrylate. Macromol. Mater. Eng. 304(7), 1800793 (2019). https://doi.org/10.1002/MAME.201800793
- O.A. González-Estrada, A. Pertuz, J.E. Quiroga Mendez, Evaluation of tensile properties and damage of continuous fbre reinforced 3D-printed parts. Key Eng. Mater. 774, 161–166 (2018). https://doi.org/10.4028/ www.scientifc.net/KEM.774.161
- F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 80, 369–378 (2015). https://doi.org/10. 1016/J.COMPOSITESB.2015.06.013
- C. Ghnatios, K. Fayazbakhsh, Warping estimation of continuous fiber-reinforced composites made by robotic 3D printing. Addit. Manuf. 55, 102796 (2022). https://doi.org/10.1016/J.ADDMA.2022.102796
- J. Alcántara, D. de la Fuente, B. Chico, J. Simancas, I. Díaz, M. Morcillo, Marine atmospheric corrosion of carbon steel: a review. Materials (Basel) 10(4), 406 (2017). https://doi.org/10.3390/ma10040406
- J. Oliveira, A. Belchior, V.D. da Silva, A. Rotter, Ž Petrovski, P.L. Almeida, N.D. Lourenço, S.P. Gaudêncio, Marine environmental plastic pollution: mitigation by microorganism degradation and recycling valorization. Front. Mar. Sci. 7, 1007 (2020). https://doi.org/10.3389/FMARS.2020. 567126/BIBTEX
- S. Lee, D. Lee, M. Kim, T. Kang, S. Lee, J. Park, Correlation between mechanical properties degradation and discoloration of epoxy polymer by solar radiation exposure. Int. J. Aeronaut. Space Sci. 19(4), 843–854 (2018). https://doi.org/10.1007/s42405-018-0096-1
- R.K. Upadhyay, A.K. Mishra, A. Kumar, Mechanical degradation of 3D printed PLA in simulated marine environment. Surf. Interfaces 21, 100778 (2020). https://doi.org/10.1016/J.SURFIN.2020.100778
- S. Yang, M. Chu, F. Chen, M. Fu, Y. Lv, Z. Xiao, N. Feng, Y. Song, J. Li, Effect of different environmental conditions on durabilities of polyester- and vinylester-based glass-fber-reinforced polymer pultruded profles. Front. Mater. 9, 201 (2022). https://doi.org/10.3389/fmats.2022.862872
- J. Zhu, Y. Deng, P. Chen, G. Wang, H. Min, W. Fang, Prediction of long-term tensile properties of glass fber reinforced composites under acid-base and salt environments. Polymers (Basel) 14(15), 3031 (2022). https://doi. org/10.3390/polym14153031
- A. Yahamed, P. Ikonomov, P.D. Fleming, A. Pekarovicova, P. Gustafson, A.Q. Alden, S. Alrafeek, Mechanical properties of 3D printed polymers. J. Print Media Technol. Res. 5(4), 273–289 (2016)
- M. Algarni, S. Ghazali, Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG's mechanical properties to FDM printing process parameters. Crystals 11(8), 995 (2021). https://doi.org/10.3390/cryst1108099
- C.G. Amza, A. Zapciu, G. Constantin, F. Baciu, M.I. Vasile, Enhancing mechanical properties of polymer 3D printed parts. Polymers (Basel) 13(4), 562 (2021). https://doi.org/10.3390/polym13040562
- M. Quinn, U. Lafont, J. Versteegh, J. Guo, Effect of low vacuum environment on the fused flament fabrication process. CEAS Space J. 13(3), 369–376 (2021). https://doi.org/10.1007/s12567-021-00363-7
- H. Jami, S.H. Masood, W.Q. Song, Dynamic stress-strain compressive behaviour of FDM made ABS and PC parts under high strain rates. IOP Conf. Ser. Mater. Sci. Eng. 377(1), 012153 (2018). https://doi.org/10. 1088/1757-899X/377/1/012153
- Q. Bao, W. Wong, S. Liu, X. Tao, Accelerated degradation of poly(lactide acid)/poly(hydroxybutyrate) (PLA/PHB) yarns/fabrics by UV and O2 Exposure in South China Seawater. Polymers (Basel) 14(6), 1216 (2022). https://doi.org/10.3390/polym14061216
- D. Huang, Z.-D. Hu, T.-Y. Liu, B. Lu, Z.-C. Zhen, G.-X. Wang, J.-H. Ji, Seawater degradation of PLA accelerated by water-soluble PVA. E-Polymers 20(1), 759–772 (2020). https://doi.org/10.1515/epoly-2020-0071
- K.L. Lam, A. Bakar, Z.A.M. Ishak, J. Karger-Kocsis, Amorphous copolyester/polyoxymethylene blends: thermal, mechanical and morphological properties. Kautsch. Gummi Kunstst. 57(11), 570 (2004)
- W.W. Focke, S. Joseph, J. Grimbeek, G.J. Summers, B. Kretzschmar, Mechanical properties of ternary blends of ABS + HIPS + PETG. Polym. Plast. Technol. Eng. 48(8), 814–820 (2009). https://doi.org/10.1080/ 03602550902994862
- P. Wang, B. Zou, S. Ding, C. Huang, Z. Shi, Y. Ma, P. Yao, Preparation of short CF/GF reinforced PEEK composite flaments and their comprehensive properties evaluation for FDM-3D printing. Compos. Part B Eng. 198, 108175 (2020). https://doi.org/10.1016/J.COMPOSITESB.2020.108175
- J.T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, P.G. Ifju, Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 23(4), 811–824 (2017). https://doi.org/ 10.1108/RPJ-03-2016-0042/FULL/XML
- K. Fayazbakhsh, M. Movahedi, J. Kalman, The impact of defects on tensile properties of 3D printed parts manufactured by fused flament fabrication. Mater. Today Commun. 18, 140–148 (2019). https://doi.org/10. 1016/J.MTCOMM.2018.12.003