Published April 20, 2022 | Version v1
Journal article Open

Air-Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea

  • 1. Institut für Meereskunde, Universität Hamburg, Hamburg; The Ocean in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany Germany
  • 2. The Ocean in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
  • 3. Institut für Meereskunde, Universität Hamburg, Hamburg, Germany; The Ocean in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
  • 4. The Ocean in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany; Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany

Description

Abstract

We use a global 5-km resolution model to analyze the air-sea interactions during a katabatic storm in the Irminger Sea originating from the Ammassalik valleys. Katabatic storms have not yet been resolved in global climate models, raising the question of whether and how they modify water masses in the Irminger Sea. Our results show that dense water forms along the boundary current and on the shelf during the katabatic storm due to the heat loss caused by the high wind speeds and the strong temperature contrast. The dense water contributes to the lightest upper North Atlantic Deep Water as upper Irminger Sea Intermediate Water and thus to the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). The katabatic storm triggers a polar low, which in turn amplifies the near-surface wind speed due to the superimposed pressure gradient, in addition to acceleration from a breaking mountain wave. Overall, katabatic storms account for up to 25% of the total heat loss (20 January 2020 to 30 September 2021) over the Irminger shelf of the Ammassalik area. Resolving katabatic storms in global models is therefore important for the formation of dense water in the western boundary current of the Irminger Sea, which is relevant to the AMOC, and for the largescale atmospheric circulation by triggering polar lows.

 

Plain Language Summary

Katabatic storms are outbursts of cold air associated with strong winds from coastal valleys of Greenland, in particular from the Ammassalik valleys in southeast Greenland. These storms are not resolved in global climate models because of their small spatial extent. However, they are important for the formation of dense water on the Irminger Sea shelf, because they induce a substantial heat loss from the coastal water. In this study, we resolve katabatic storms for the first time in a global climate model and analyze the water transformation caused by a single storm before quantifying the importance of katabatic storms for the entire simulation period. We find that a water mass is formed during the katabatic storm that is dense enough to contribute to the cooling and sinking of the global conveyor belt in the subpolar North Atlantic. Overall, katabatic storms account for up to 25% of the heat loss over the Irminger shelf of the Ammassalik area.

 

------------------------------

Acknowledgements

This work is a contribution to the project S2 (Improved Parameterizations and Numerics in Climate Models) of the Collaborative Research Centre TRR 181 “Energy Transfer in Atmosphere and Ocean” funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project number 274762653 and the Max Planck Society for the Advancement of Science. The research was supported by the European Union Horizon 2020 collaborative project NextGEMS (Grant No. 101003470). DYAMOND data management was provided by the Deutsches Klimarechenzentrum (DKRZ) and supported through the projects ESiWACE and ESiWACE2. The projects ESiWACE and ESiWACE2 have received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreements Nos. 675191 and 823988. This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific Steering Committee (WLA) under project IDs bk1040 and bb1153. We thank the DYAMOND Winter team at MPI-M and DKRZ (https://www.esiwace.eu/services/ dyamond/winter) for producing the simulation. We further thank Elisa Manzini for providing constructive comments and two anonymous reviewers. Open access funding enabled and organized by Projekt DEAL.

 

 

Notes

Data Availability Statement Open Research Primary scripts to reproduce the figures and analyses can be obtained from MPG.PuRe (http:// hdl.handle.net/21.11116/0000-0008-ECF1-E, Gutjahr et al. (2021a) and the model data from the WDCC Long Term Archive (http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_LTA_033_ds00010, Gutjahr et al., 2021b). The model code of ICON is available to individuals under licenses (https://mpimet.mpg.de/en/ science/modeling-with-icon/code-availability). The buoyancy fluxes and the water mass transformation were calculated with R 4.0.2 (R Core Team, 2020) and the oce package version 1.3-0 (Kelley & Richards, 2021).

Files

JGR Oceans - 2022 - Gutjahr - Air‐Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger.pdf

Additional details

Funding

ESiWACE2 – Excellence in Simulation of Weather and Climate in Europe, Phase 2 823988
European Commission
NextGEMS – Next Generation Earth Modelling Systems 101003470
European Commission
ESiWACE – Excellence in SImulation of Weather and Climate in Europe 675191
European Commission

References

  • An, L., Rignot, E., Chauche, N., Holland, D., Holland, D., Jakobsson, M., et al. (2019). Bathymetry of southeast Greenland from oceans melting Greenland (OMG) data. Geophysical Research Letters, 46, 11197–11205. https://doi.org/10.1029/2019GL083953
  • Bacon, S., Gould, W. J., & Jia, Y. L. (2003). Open-ocean convection in the Irminger Sea. Geophysical Research Letters, 30(5), 1246. https://doi. org/10.1029/2002GL016271
  • Blanke, B., & Delecluse, P. (1993). Variability of the Tropical Atlantic ocean simulated by a general circulation model with two different mixedlayer physics. Journal of Physical Oceanography, 23(7), 1363–1388. https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
  • Blechschmidt, A.-M., Bakan, S., & Graßl, H. (2009). Large-scale atmospheric circulation patterns during polar low events over the Nordic seas. Journal of Geophysical Research, 114, D06115. https://doi.org/10.1029/2008JD010865
  • Bracegirdle, T. J., & Gray, S. L. (2008). An objective climatology of the dynamical forcing of polar lows in the Nordic Seas. International Journal of Climatology, 28, 1903–1919. https://doi.org/10.1002/joc.1686
  • Bracegirdle, T. J., & Gray, S. L. (2009). The dynamics of a polar low assessed using potential vorticity inversion. Quarterly Journal of the Royal Meteorological Society, 135, 880–893. https://doi.org/10.1002/qj.411
  • Chafik, L., & Rossby, T. (2019). Volume, heat, and freshwater divergences in the subpolar North Atlantic suggest the Nordic seas as key to the state of the meridional overturning circulation. Geophysical Research Letters, 46, 4799–4808. https://doi.org/10.1029/2019GL082110
  • Condron, A., Bigg, G. R., & Renfrew, I. A. (2008). Modeling the impact of polar mesocyclones on ocean circulation. Journal of Geophysical Research, 113, C10005. https://doi.org/10.1029/2007JC004599
  • Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., et al. (2016). The northern North Atlantic Ocean mean circulation in the early 21st century. Progress in Oceanography, 146, 142–158. https://doi.org/10.1016/j.pocean.2016.06.007
  • de Jong, M. F., Oltmanns, M., Karstensen, J., & Steur, L. (2018). Deep convection in the Irminger Sea observed with a dense mooring array. Oceanography, 31, 50–59. https://doi.org/10.5670/oceanog.2018.109
  • de Jong, M. F., van Aken, H. M., Våge, K., & Pickart, R. S. (2012). Convective mixing in the central Irminger Sea: 2002–2010. Deep-Sea Research I, 63, 36–51. https://doi.org/10.1016/j.dsr.2012.01.003
  • Desbruyères, D., Mercier, H., Maze, G., & Daniault, N. (2019). Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic. Ocean Science, 15, 809–817. https://doi.org/10.5194/os-15-809-2019
  • Dierer, S., & Schluenzen, K. H. (2005). Influence parameters for a polar mesocyclone development. Meteorologische Zeitschrift, 14, 781–792. https://doi.org/10.1127/0941-2948/2005/0077
  • Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M., & Brdar, S. (2015). Large eddy simulation using the general circulation model ICON. Journal of Advances in Modeling Earth Systems, 7, 963–986. https://doi.org/10.1002/2015MS000431
  • Doyle, J. D., & Shapiro, M. A. (1999). Flow response to large-scale topography: The Greenland tip jet. Tellus, 51, 728–748. https://doi. org/10.1034/j.1600-0870.1996.00014.x
  • DuVivier, A. K., & Cassano, J. J. (2013). Evaluation of WRF model resolution on simulated mesoscale winds and surface fluxes near Greenland. Monthly Weather Review, 141(3), 941–963. https://doi.org/10.1175/MWR-D-12-00091.1
  • Duyck, E., & de Jong, M. F. (2021). Circulation over the south-east Greenland shelf and potential freshwater export: A drifter study. Geophysical Research Letters, 48, e2020GL091948. https://doi.org/10.1029/2020GL091948
  • Eady, E. (1949). Long waves and cyclone waves. Tellus, 1, 33–52. https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
  • Gaspar, P., Grégoris, Y., & Lefevre, J.-M. (1990). A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. Journal of Geophysical Research, 95(C9), 16179–16193. https://doi.org/10.1029/ JC095iC09p16179
  • Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., et al. (2018). ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. Journal of Advances in Modeling Earth Systems, 10, 1613–1637. https://doi.org/10.1029/2017MS001242
  • Giorgi, F. (2019). Thirty years of regional climate modelling: Where are we and where are we going next? Journal of Geophysical Research: Atmospheres, 124, 5696–5723. https://doi.org/10.1029/2018JD030094
  • Groeskamp, S., Griffies, S. M., Iudicone, D., Marsh, R., Nurser, A. J. G., & Zika, J. D. (2019). The water mass transformation framework for ocean physics and biogeochemistry. Annual Review of Marine Science, 11, 271–305. https://doi.org/10.1146/annurev-marine-010318-095421
  • Gutjahr, O., & Heinemann, G. (2018). A model-based comparison of extreme winds in the Arctic and around Greenland. International Journal of Climatology, 38, 5272–5292. https://doi.org/10.1002/joc.5729
  • Gutjahr, O., Jungclaus, J. H., Brüggemann, N., Haak, H., & Marotzke, J. (2021a). Air-sea interactions and water mass transformation during a katabatic storm in the Irminger Sea – Scripts. Retrieved from http://hdl.handle.net/72021.11116/0000-0008-ECF1-E
  • Gutjahr, O., Jungclaus, J. H., Brüggemann, N., Haak, H., & Marotzke, J. (2021b). Air-sea interactions and water mass transformation during a katabatic storm in the Irminger Sea – ICON Dyamond Winter simulation data. World data center for climate (WDCC) at DKRZ. Retrieved from https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=DKRZ_LTA_033_ds00010
  • Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., et al. (2016). High resolution model Intercomparison project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9(11), 4185–4208. https://doi.org/10.5194/gmd-9-4185-2016
  • Heinemann, G. (2003). Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets. The Global Atmosphere and Ocean System, 9(4), 169–201. https://doi.org/10.1080/1023673042000198130
  • Heinemann, G., & Klein, T. (2002). Modelling and observations of the katabatic flow dynamics over Greenland. Tellus A: Dynamic Meteorology and Oceanography, 54(5), 542–554. https://doi.org/10.3402/tellusa.v54i5.12167
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • Hoskins, B. J., McIntyre, M. E., & Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877–946. https://doi.org/10.1002/qj.49711147002
  • Josey, S. A., de Jong, M. F., Oltmanns, M., Moore, G. K., & Weller, R. A. (2019). Extreme variability in Irminger Sea winter heat loss revealed by ocean Observatories initiative mooring and the ERA5 reanalysis. Geophysical Research Letters, 46, 293–302. https://doi. org/10.1029/2018GL080956
  • Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., et al. (2022). The ICON Earth System Model version 1.0. Journal of Advances in Modeling Earth Systems, 14, e2021MS002813. https://doi.org/10.1029/2021MS002813
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The Ncep/ncar 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  • Kelley, D., & Richards, C. (2021). oce: Analysis of oceanographic data [Computer software manual]. (R package version 1.3-0). Retrieved from https://CRAN.R-project.org/package=oce
  • Klaver, R., Haarsma, R., Vidale, P. L., & Hazeleger, W. (2020). Effective resolution in high resolution global atmospheric models for climate studies. Atmospheric Science Letters, 21, e952. https://doi.org/10.1002/asl.952
  • Klein, T., & Heinemann, G. (2002). Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland. Meteorological Applications, 9, 407–422. https://doi.org/10.1017/S1350482702004036
  • Kolstad, E. W. (2011). A global climatology of favourable conditions for polar lows. Quarterly Journal of the Meteorological Society, 137, 1749–1761. https://doi.org/10.1002/qj.888
  • Kolstad, E. W., Bracegirdle, T. J., & Seierstad, I. A. (2009). Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation. Climate Dynamics, 33, 187–197. https://doi.org/10.1007/s00382-008-0431-5
  • Korn, P. (2017). Formulation of an unstructured grid model for global ocean dynamics. Journal of Comparative Physiology, 339, 525–552. https://doi.org/10.1016/j.jcp.2017.03.009
  • Kristjánsson, J. E., Thorsteinsson, S., Kolstad, E. W., & Blechschmidt, A.-M. (2011). Orographic influence of east Greenland on a polar low over the Denmark Strait. Quarterly Journal of the Meteorological Society, 137, 1773–1789. https://doi.org/10.1002/qj.831
  • LaCasce, J. H., & Groeskamp, S. (2020). Baroclinic modes over rough bathymetry and the surface deformation radius. Journal of Physical Oceanography, 50, 2835–2847. https://doi.org/10.1175/JPO-D-20-0055.1
  • Landgren, O. A., Batrak, Y., Haugen, J. E., Støylen, E., & Iversen, T. (2019). Polar low variability and future projections for the Nordic and Barents Seas. Quarterly Journal of the Royal Meteorological Society, 145(724), 3116–3128. https://doi.org/10.1002/qj.3608
  • LeBras, I. A.-A., Straneo, F., Holte, J., de Jong, M. F., & Holliday, N. P. (2020). Rapid export of waters formed by convection near the Irminger Sea's Western boundary. Geophysical Research Letters, 47, e2019GL085989. https://doi.org/10.1029/2019gl085989
  • Leduc, M., & Laprise, R. (2009). Regional climate model sensitivity to domain size. Climate Dynamics, 32, 833–854. https://doi.org/10.1007/ s00382-008-0400-z
  • Li, F., Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F., et al. (2021). Subpolar North Atlantic Western boundary density anomalies and the meridional overturning circulation. Nature Communications, 12, 3002. https://doi.org/10.1038/s41467-021-23350-2
  • Lindzen, R., & Farrell, B. (1980). A simple approximate result for the maximum growth rate of baroclinic instabilities. Journal of the Atmospheric Sciences, 37, 1648–1654. https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2
  • Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Steur, L., et al. (2017). Overturning in the subpolar North Atlantic program: A new International ocean observing system. Bulletin of the American Meteorological Society, 98(4), 737–752. https://doi. org/10.1175/BAMS-D-16-0057.1
  • Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., et al. (2019). A sea change in our view of overturning in the subpolar North Atlantic. Science, 363(6426), 516–521. https://doi.org/10.1126/science.aau6592
  • Mc Innes, H., Kristiansen, J., Kristjánsson, J. E., & Schyberg, H. (2011). The role of horizontal resolution for polar low simulations. Quarterly Journal of the Royal Meteorological Society, 137(660), 1674–1687. https://doi.org/10.1002/qj.849
  • Mc Innes, H., Kristiansen, J., Kristjánsson, J. E., & Schyberg, H. (2011). The role of horizontal resolution for polar low simulations. Quarterly Journal of the Royal Meteorological Society, 137(660), 1674–1687. https://doi.org/10.1002/qj.849
  • Mc Innes, H., Kristiansen, J., Kristjánsson, J. E., & Schyberg, H. (2011). The role of horizontal resolution for polar low simulations. Quarterly Journal of the Royal Meteorological Society, 137(660), 1674–1687. https://doi.org/10.1002/qj.849
  • Moore, G. W. K. (2014). Mesoscale structure of Cape Farewell tip jets. Journal of Climate, 27, 8956–8965. https://doi.org/10.1175/JCLI-D-14-00299.1
  • Moore, G. W. K., & Renfrew, I. A. (2005). Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. Journal of Climate, 18(18), 3713–3725. https://doi.org/10.1175/JCLI3455.1
  • Moore, G. W. K., Renfrew, I. A., Harden, B. E., & Mernild, S. H. (2015). The impact of resolution on the representation of southeast Greenland barrier winds and katabatic flows. Geophysical Research Letters, 42, 3011–3018. https://doi.org/10.1002/2015GL063550
  • Moreno-Ibáñez, M., Laprise, R., & Gachon, P. (2021). Recent advances in polar low research: Current knowledge, challenges and future perspectives. Tellus A: Dynamic Meteorology and Oceanography, 73(1), 1–31. https://doi.org/10.1080/16000870.2021.1890412
  • Moreno-Ibáñez, M., Laprise, R., & Gachon, P. (2021). Recent advances in polar low research: Current knowledge, challenges and future perspectives. Tellus A: Dynamic Meteorology and Oceanography, 73(1), 1–31. https://doi.org/10.1080/16000870.2021.1890412
  • Oltmanns, M., Straneo, F., Moore, G. W. K., & Mernild, S. H. (2014). Strong downslope wind events in Ammassalik, southeast Greenland. Journal of Climate, 27, 977–993. https://doi.org/10.1175/JCLI-D-13-00067.1
  • Oltmanns, M., Straneo, F., Seo, H., & Moore, G. W. K. (2015). Role of wave dynamics and small-scale topography for downslope wind events in southeast Greenland. Journal of the Atmospheric Sciences, 72, 2786–2805. https://doi.org/10.1175/JAS-D-14-0257.1
  • Paquin, J.-P., Lu, Y., Higginson, S., Dupont, F., & Garric, G. (2016). Modelled variability of deep convection in the Irminger Sea during 2003–10. Journal of Physical Oceanography, 46, 179–196. https://doi.org/10.1175/JPO-D-15-0078.1
  • Paquin, J.-P., Lu, Y., Higginson, S., Dupont, F., & Garric, G. (2016). Modelled variability of deep convection in the Irminger Sea during 2003–10. Journal of Physical Oceanography, 46, 179–196. https://doi.org/10.1175/JPO-D-15-0078.1
  • Pickart, R. S., Spall, M. A., Ribergaard, M. H., Moore, G. W. K., & Milliff, R. F. (2003). Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424(6945), 152–156. https://doi.org/10.1038/nature01729
  • Rasmussen, L. (1989). Greenland winds and satellite imagery (Vol. 32–37). Vejret-Danish Meteorological Society.
  • R Core Team. (2020). R: A language and environment for statistical computing [Computer software manual]. Retrieved from https://www.Rproject.org/dataset
  • Reinecke, P. A., & Durran, D. (2009). The overamplification of gravity waves in numerical solutions to flow over topography. Monthly Weather Review, 137, 1533–1549. https://doi.org/10.1175/2008MWR2630.1
  • Rühs, S., Oliver, E. C. J., Biastoch, A., Böning, C. W., Dowd, M., Getzlaff, K., et al. (2021). Changing spatial patterns of deep convection in the subpolar North Atlantic. Journal of Geophysical Research: Oceans, 126, e2021JC017245. https://doi.org/10.1029/2021JC017245
  • Sampe, T., & Xie, S.-P. (2007). Mapping high sea winds from space: A global climatology. Bulletin of the American Meteorological Society, 88(12), 1965–1978. https://doi.org/10.1175/BAMS-88-12-1965
  • Simmons, A., & Gibson, J. (2000). The ERA-40 project plan (Vol. 3, No. 1, pp. 62). ECMWF. Retrieved from https://www.ecmwf.int/node/12272
  • Skamarock, W. C. (2004). Evaluating mesoscale NWP models using kinetic energy spectra. Monthly Weather Review, 132(12), 3019–3032. https://doi.org/10.1175/MWR2830.1
  • Speer, K., & Tziperman, E. (1992). Rates of water mass formation in the North Atlantic ocean. Journal of Physical Oceanography, 22, 93–104. https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2
  • Steele, M., Morley, R., & Ermold, W. (2001). PHC: A global ocean hydrography with a high quality Arctic Ocean. Journal of Climate, 14, 2079–2087.
  • Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C., Chen, X., et al. (2019). Dyamond: The DYnamics of the Atmospheric circulation Modeled on Non-hydrostatic Domains. Progress in Earth and Planetary Science, 6, 61. https://doi.org/10.1186/s40645-019-0304-z
  • Stoll, P. J., Graversen, R. G., Noer, G., & Hodges, K. (2018). An objective global climatology of polar lows based on reanalysis data. Quarterly Journal of the Royal Meteorological Society, 144(716), 2099–2117. https://doi.org/10.1002/qj.3309
  • Våge, K., Pickart, R., Sarafanov, A., Knutsen, Ø., Mercier, H., Lherminier, P., et al. (2011). The Irminger Gyre: Circulation, convection, and interannual variability. Deep-Sea Research I, 58, 590–614. https://doi.org/10.1016/j.dsr.2011.03.001
  • Våge, K., Pickart, R., Thierry, V., Reverdin, G., Lee, C. M., Petrie, B., et al. (2009). Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nature Geoscience, 2, 67–72. https://doi.org/10.1038/ngeo382
  • Van Delden, A., Rasmussen, E. A., Turner, J., & Røsting, B. (2003). Theoretical investigations. In E. A.Rasmussen, & J.Turner (Eds.), Polar lows: Mesoscale weather systems in the polar regions (pp. 286–404). Cambridge University Press. https://doi.org/10.1017/CBO9780511524974.005
  • Yeager, S., Castruccio, F., Chang, P., Danabasoglu, G., Maroon, E., Small, J., et al. (2021). An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation. Science Advances, 7(41), eabh3592. https://doi.org/10.1126/sciadv.abh3592
  • Xia, L., Zahn, M., Hodges, K. I., Feser, F., & von Storch, H. (2012). A comparison of two identification and tracking methods for polar lows. Tellus A: Dynamic Meteorology and Oceanography, 64(1), 17196. https://doi.org/10.3402/tellusa.v64i0.17196
  • Zahn, M., & von Storch, H. (2008). A long-term climatology of North Atlantic polar lows. Geophysical Research Letters, 35, L22702. https:// doi.org/10.1029/2008GL035769
  • Zängl, G., Reinert, D., Rípodas, P., & Baldauf, M. (2015). The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quarterly Journal of the Royal Meteorological Society, 141, 563–579. https://doi. org/10.1002/qj.2378