Published March 15, 2023 | Version v1
Journal article Open

Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism

Description

Zhang, Guojin, Hu, Yi, Huang, Ming-Zhong, Huang, Wei-Chang, Liu, Ding-Kun, Zhang, Diyang, Hu, Haihua, Downing, Jason L., Liu, Zhong-Jian, Ma, Hong (2023): Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. Journal of Integrative Plant Biology 65 (5): 1204-1225, DOI: 10.1111/jipb.13462, URL: http://dx.doi.org/10.1111/jipb.13462

Files

source.pdf

Files (4.3 MB)

Name Size Download all
md5:62db71ec77879d00b12ae1d8d2061687
4.3 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFDBFFECFF879D00B12AFFD8D206FF87

References

  • Alghamdi, S.A. (2019). Influence of mycorrhizal fungi on seed germination and growth in terrestrial and epiphytic orchids. Saudi J. Biol. Sci. 26: 495-502.
  • Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/ fastqc/
  • Barrett, C.F., Sinn, B.T., Kennedy, A.H., and Pupko, T. (2019). Un- precedented parallel photosynthetic losses in a heterotrophic orchid genus. Mol. Biol. Evol. 36: 1884-1901.
  • Barthlott, W., Grosse -Veldmann, B., and Korotkova, N. (2014). Orchidseed diversity: A scanning electron microscopy survey. Englera 32: 1-239.
  • Benton, M.J., Wilf, P., and Sauquet, H. (2022). The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytol. 233: 2017-2035.
  • van den Berg, C., Goldman, D.H., Freudenstein, J.V., Pridgeon, A.M., Cameron, K.M., and Chase, M.W. (2005). An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). Am. J. Bot. 92: 613-624.
  • van den Berg, C., Higgins, W.E., Dressler, R.L., Whitten, W.M., Soto - Arenas, M.A., and Chase, M.W. (2009). Aphylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences. Ann. Bot. 104: 417-430.
  • Berry, K. (2020). Evidence for fungal proliferation following the Cretaceous/Paleogene mass- extinction event, based on chemostratigraphy in the Raton and Powder River basins, western North America. Acta Palaeobot. 60: 134-142.
  • Bulpitt, C.J. (2005). The uses and misuses of orchids in medicine. QJM 98: 625-631.
  • Bulpitt, C.J., Li, Y., Bulpitt, P.F., and Wang, J. (2007). The use of orchids in Chinese medicine. J. R. Soc. Med. 100: 558-563.
  • Bushnell, B. (2015). BBMap short- read aligner, and other bioinformatics tools. https://sourceforge.net/projects/bbmap/
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). BLAST+: Architecture and ap- plications. BMC Bioinformatics 10: 421.
  • Cameron, K.M., Chase, M.W., Whitten, W.M., Kores, P.J., Jarrell, D.C., Albert, V.A., Yukawa, T., Hills, H.G., and Goldman, D.H. (1999). Aphylogenetic analysis of the Orchidaceae: Evidence from rbcL nucleotide sequences. Am. J. Bot. 86: 208-224.
  • Capella -Gutierrez, S., Silla -Martinez, J.M., and Gabaldon, T. (2009). trimAl: Atool for automated alignment trimming in large- scale phylogenetic analyses. Bioinformatics 25: 1972-1973.
  • Cardelus, C.L., Mack, M.C., Woods, C., DeMarco, J., and Treseder, K. K. (2009). The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica. Plant and Soil. 318: 47-61.
  • Carlsward, B.S., Whitten, W.M., Williams, N.H., and Bytebier, B. (2006). Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Am. J. Bot. 93: 770-786.
  • Carvalho, M.R., Jaramillo, C., de la Parra, F., Caballero -Rodriguez, D., Herrera, F., Wing, S., Turner, B.L., D'Apolito, C., Romero -Baez, M., Narvaez, P., Martinez, C., Gutierrez, M., Labandeira, C., Bayona, G., Rueda, M., Paez -Reyes, M., Cardenas, D., Duque, A., Crowley, J.L., Santos, C., and Silvestro, D. (2021). Extinction at the end- Cretaceous and the origin of modern Neotropical rainforests. Science 372: 63-68.
  • Chase, M.W., Cameron, K.M., Freudenstein, J.V., Pridgeon, A.M., Salazar, G., van den Berg, C., and Schuiteman, A. (2015). An up- dated classification of Orchidaceae. Bot. J. Linn. Soc. 177: 151-174.
  • Chomicki, G., Bidel, L.P.R., Ming, F., Coiro, M., Zhang, X., Wang, Y., Baissac, Y., Jay -Allemand, C., and Renner, S.S. (2015). The velamen protects photosynthetic orchid roots against UV- B damage,and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytol. 205: 1330-1341.
  • Christenhusz, M.J.M. and Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261: 201-217.
  • Cramer, M.J. and Willig, M.R. (2002). Habitat heterogeneity, habitat associations, and rodent species diversity in a sand- shinnery- oak landscape. J. Mammal. 83: 743-753.
  • Crayn, D.M., Winter, K., and Smith, J.A.C. (2004). Multiple origins of cras- sulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc. Natl. Acad. Sci. U.S.A. 101: 3703-3708.
  • Cvetkovic, T., Areces -Berazain, F., Hinsinger, D.D., Thomas, D.C., Wieringa, J.J., Ganesan, S.K., and Strijk, J.S. (2021). Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. G3 Genes Genomes Genetics 11: kab136.
  • Darwin, C. (1877). The Various Contrivances by Which Orchids Are Fer - tilised by Insects (London: John Murray).
  • Dearnaley, J.D.W., Martos, F., and Selosse, M.A. (2012). Orchid my- corrhizas: Molecular ecology, physiology, evolution and conservation aspects. In: B. Hock ed. Fungal Associations, 2nd Ed., Heidelberg: Springer, Berlin. pp. 207-230.
  • Deng, H., Zhang, G., Lin, M., Wang, Y., and Liu, Z. (2015). Mining from transcriptomes: 315 single- copy orthologous genes concatenated for the phylogenetic analyses of Orchidaceae. Ecol. Evol. 5: 3800-3807.
  • Dewi, E.R.S., Nurgroho, A.S., and Ulfah, M. (2020). Types of epiphytic orchids and host plants on ungaran mountain limbangan kendal central java and its potential as orchid conservation area. Int. J. Conserv. Sci 11: 117-124.
  • Du, X.Y., Lu, J.M., Zhang, L.B., Wen, J., Kuo, L.Y., Mynssen, C.M., Schneider, H., and Li, D.Z. (2021). Simultaneous diversification of Poly- podiales and angiosperms in the Mesozoic. Cladistics 37: 518-539.
  • Ebersberger, I., Strauss, S., and Von Haeseler, A. (2009). HaMStR: Profile hidden markov model based search for orthologs in ESTs. BMC Evol. Biol. 9: 157.
  • Eguchi, S. and Tamura, M.N. (2016). Evolutionary timescale of monocots determined by the fossilized birth- death model using a large number of fossil records. Evolution 70: 1136-1144.
  • Emms, D.M. and Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20: 1-14.
  • Engwald, S., Schmit -Neuerburg, V., and Barthlott, W. (2000). Epiphytes in rain forests of Venezuela - Diversity and dynamics of a biocenosis. In: Breckle, S. W., Schweizer B., eds. Results of Worldwide Ecological Studies. Proceedings of the 1st Symposium by the A.F.W Schimper - Foundation - from H. and E. Walter - Hoheneim, Oktober 1998, Ho- henheim: Verlag GunterHeimbach, Stuttgart. pp. 425-433.
  • Eserman, L.A., Thomas, S.K., Coffey, E.E.D., and Leebens -Mack, J.H. (2021). Target sequence capture in orchids: Developing a kit to sequence hundreds of single- copy loci. Appl. Plant Sci. 9: e11416.
  • Fernandez, M., Kaur, J., and Sharma, J. (2023). Co- occurring epiphytic orchids have specialized mycorrhizal fungal niches that are also linked to phenology. Mycorrhiza.
  • Freudenstein, J.V. and Chase, M.W. (2015). Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: Progressive specialization and diversification. Ann. Bot. 115: 665-681.
  • Gallage, N.J. and Moller, B.L. (2015). Vanillin- bioconversion and bio- engineering of the most popular plant flavor and its de novo biosyn- thesis in the vanilla orchid. Mol. Plant 8: 40-57.
  • Gebauer, G., Preiss, K., and Gebauer, A.C. (2016). Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol. 211: 11-15.
  • Givnish, T.J., Spalink, D., Ames, M., Lyon, S.P., Hunter, S.J., Zuluaga, A., Doucette, A., Caro, G.G., McDaniel, J., Clements, M.A., Arroyo, M.T.K., Endara, L., Kriebel, R., Williams, N.H., and Cameron, K.M. (2016). Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J. Biogeogr. 43: 1905-1916.
  • Givnish, T.J., Spalink, D., Ames, M., Lyon, S.P., Hunter, S.J., Zuluaga, A., Iles, W.J.D., Clements, M.A., Arroyo, M.T.K., Leebens -Mack, J., Endara, L., Kriebel, R., Neubig, K.M., Whitten, W.M., Williams, N.H., and Cameron, K.M. (2015). Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. R. Soc. B Biol. Sci. 282.
  • Gorniak, M., Paun, O., and Chase, M.W. (2010). Phylogenetic relationships within Orchidaceae based on a low- copy nuclear coding gene, Xdh: Congruence with organellar and nuclear ribosomal DNA results. Mol. Phylogenet. Evol. 56: 784-795.
  • Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B.W., Nusbaum, C., Lindblad -Toh, K., Friedman, N., and Regev, A. (2011). Full- length transcriptome assembly from RNA- Seq data without a reference genome. Nat. Biotechnol. 29: 644-652.
  • Gustafsson, A.L.S., Verola, C.F., and Antonelli, A. (2010). Reassessing the temporal evolution of orchids with new fossils and a Bayesian re- laxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evol. Biol. 10: 1-13.
  • Hasing, T., Tang, H., Brym, M., Khazi, F., Huang, T., and Chambers, A.H. (2020). Aphased Vanilla planifolia genome enables genetic im- provement of flavour and production. Nat. Food 1: 811-819.
  • Hernandez -Perez, E., Solano, E., Rios -Gomez, R., Hernandez -Perez, E., Solano, E., and Rios -Gomez, R. (2018). Host affinity and vertical
  • Hew, C.S. (2001). Ancient Chinese orchid cultivation. Afresh look at an age- old practice. Sci. Hortic. (Amsterdam) 87: 1-10.
  • Holbrook, N.M. and Putz, F.E. (1996). Physiology of tropical vines and Hemiepiphytes: Plants that climb up and plants that climb down. In Tropical Forest Plant Ecophysiology, S. S. Mulkey, R. L. Chazdon and A. P. Smith, eds. (Boston, MA: Springer). pp. 363-394.
  • Huang, B.Q., Yang, X.Q., Yu, F.H., Luo, Y.B., and Tai, Y.D. (2008). Surprisingly high orchid diversity in travertine and forest areas in the Huanglong valley, China, and implications for conservation. Biodivers. Conserv. 17: 2773-2786.
  • Huang, W., Zhang, L., Columbus, J.T., Hu, Y., Zhao, Y., Tang, L., Guo, Z., Chen, W., McKain, M., Bartlett, M., Huang, C.H., Li, D.Z., Ge, S., and Ma, H. (2022). A well- supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Mol. Plant 15: 755-777.
  • Huurdeman, E.P., Frieling, J., Reichgelt, T., Bijl, P.K., Bohaty, S.M., Holdgate, G.R., Gallagher, S.J., Peterse, F., Greenwood, D.R., and Pross, J. (2021). Rapid expansion of meso- megathermal rain forests into the southern high latitudes at the onset of the Paleocene- Eocene Thermal Maximum. Geology 49: 40-44.
  • Iles, W.J.D., Smith, S.Y., Gandolfo, M.A., and Graham, S.W. (2015). Monocot fossils suitable for molecular dating analyses. Bot. J. Linn. Soc. 178: 346-374.
  • Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal -Ortiz, H., Pratt, L.M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M.J., De La Parra, F., Moron, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H., Navarrete, R., Parra, F., Alvaran, M., Osorno, J., Crowley, J.L., Valencia, V., and Vervoort, J. (2010). Effects of rapid global warming at the paleocene- eocene boundary on neotropical vegetation. Science 330: 957-961.
  • Joca, T.A.C., Oliveira, D.C., de Zotz, G., Winkler, U., and Moreira, A.S. F.P. (2017).The velamen of epiphytic orchids:Variation in structure and correlations with nutrient absorption. Flora 230: 66-74.
  • Kaiho, K., Oshima, N., Adachi, K., Adachi, Y., Mizukami, T., Fujibayashi,M., and Saito, R. (2016). Global climate change driven by soot at the K- Pg boundary as the cause of the mass extinction. Sci. Rep. 6: 1-13.
  • Kassambara, A. (2020). ggpubr: "ggplot2" based publication ready plots. https://CRAN.R- project.org/package=ggpubr
  • Katoh, K. and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30: 772-780.
  • Kelly, D.L., Tanner, E.V.J., Lughadha, E.M.N., and Kapos, V. (1994). Floristics and biogeography of a rain forest in the Venezuelan Andes.J. Biogeogr. 21: 421.
  • Kim, Y.K., Jo, S., Cheon, S.H., Joo, M.J., Hong, J.R., Kwak, M., and Kim, K.J. (2020). Plastome evolution and phylogeny of orchidaceae, with 24 new sequences. Front. Plant Sci. 11: 22.
  • Krause, G.H., Koroleva, O.Y., Dalling, J.W., and Winter, K. (2001). Ac- climation of tropical tree seedlings to excessive light in simulated tree- fall gaps. Plant Cell Environ. 24: 1345-1352.
  • Kuper, W., Kreft, H., Nieder, J., Koster, N., and Barthlott, W. (2004). Large- scale diversity patterns of vascular epiphytes in Neotropical montane rainforests. J. Biogeogr 31: 1477-1487.
  • Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B., Gitzen - danner, M.A., Fritsch, P.W., Cai, J., Luo, Y., Wang, H., van der Bank, M., Zhang, S.D., Wang, Q.F., Wang, J., Zhang, Z.R., Fu, C.N., Yang, J., Hollingsworth, P.M., Chase, M.W., Soltis, D.E., Soltis, P.S., and Li, D.Z. (2019). Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5: 461-470.