Published December 30, 2022 | Version CC BY-NC-ND 4.0
Journal article Open

Potentials of Polymeric Nanocarriers Loaded with Clarithromycin for Antibacterial Activity

  • 1. Department of Pharmacy, Hygia College of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow. (Utter Pradesh), India.

Contributors

  • 1. Department of Pharmacy, Hygia College of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow. (Utter Pradesh), India.

Description

Abstract: Clarithromycin (CTM) is a semisynthetic derivative of erythromycin that have been reported to exhibit potential antibiotic activities mostly against the gram-negative and gram-positive bacteria, lower/upper respiratory tract and skin infection causing pathogens. It is widely used for the prevention and management of infections due to Mycobacterium avium complexes and peptic ulcers due to Helicobacter pylori. Various marketed formulation of CTM in the form of tablets, capsules and other conventional dosage forms is available as anti-infective, however the drug itself has several limitations. These limitations include low oral bioavailability, rapid metabolism, poor targeting to infected sites and toxicity to normal cells/tissues. Also, the CTM-based therapy has been reported for several gastrointestinal adverse effects, including diarrhea, stomach upset, gastric distress, atypical taste, and others. Thus, to overcome these issue, various novel strategies including nanotechnology or nanocarrier-based approaches have showed significant effects and have been immensely considered worldwide. In recent years, the various nanocarriers or nanocarrier-based delivery systems, particularly the polymeric nanocarrier have played significant role in effective drug targeting. Thus, in this review, the various polymeric nanocarrier-based delivery systems of CTM that effective reduced the dosing frequency, improved the patient compliance and potentially enhanced the therapeutic efficiency of CTM has been summarized.

Notes

Published By: Lattice Science Publication (LSP) © Copyright: All rights reserved.

Files

B4014023223.pdf

Files (261.1 kB)

Name Size Download all
md5:3f4a5b68ab26e3ec404eb1a6c78381d3
261.1 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 2582-7618 (ISSN)

References

  • 1. Van Nuffel, A.M.; Sukhatme, V.; Pantziarka, P.; Meheus, L.; Sukhatme, V.P.; Bouche, G. Repurposing drugs in oncology (ReDO)-clarithromycin as an anti-cancer agent. E Cancer. Med. Sci. 2015, 9, 1–26. [CrossRef] 2. Lebel, M. Pharmacokinetic properties of clarithromycin: A comparison with erythromycin and azithromycin. Can. J. Infect. Dis. 1993, 4, 148–152. [CrossRef] 3. Hardy, D.J.; Swanson, R.N.; Rode, R.A.; Marsh, K.; Shipkowitz, N.L. Enhancement of the in vitro and in vivo activities of clarithromycin against Haemophilus influenzae by 14-hydroxy-clarithromycin, its major metabolite in humans. Clement JJ Antimicrob Agents Chemother. 1990, 34(7):1407-13. [CrossRef] 4. Valizadeh, H.; Mohammadi, G.; Ehyaei, R.; Milani, M.; Azhdarzadeh, M.; Zakeri-Milani, P.; Lotfipour, F. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Die Pharmazie, 2012, 67(1), 63–68. 5. Zakeri-Milani, P.; Islambulchilar, Z.; Majidpour, F.; Jannatabadi, E.; Lotfipour, F.; Valizadeh, H. A study on enhanced intestinal permeability of clarithromycin nanoparticles. Braz. J. Pharm. Sci. 2014, 50, 121–129. [CrossRef] 6. Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers 2020, 12, 1397. [CrossRef] 7. Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi. Pharm. J. 2018, 26, 64–70. [CrossRef] 8. Öztürk, A.A.; Yenilmez, E.; ¸Senel, B.; Arslan, R.; Yazan, Y. Dexketoprofen trometamol-loaded Kollidon® SR and Eudragit® RS 100 polymeric nanoparticles: Formulation and in vitro-in vivo evaluation. Lat. Am. J. Pharm. 2017, 36, 2153–2165. 9. Bamrungsap, S.; Zhao, Z.; Chen, T.; Wang, L.; Li, C.; Fu, T.; Tan, W. A Focus on nanoparticles as a drug delivery system. Nanomedicine 2012, 7, 1253–1271. [CrossRef] 10. Majithiya, R. J., Murthy, R. S. Chitosan-based mucoadhesive microspheres of clarithromycin as a delivery system for antibiotic to stomach. Current drug delivery, 2005, 2(3), 235–242. [CrossRef] 11. Nostro, A., Cellini, L., Di Bartolomeo, S., Cannatelli, M. A., Di Campli, E., Procopio, F., Grande, R., Marzio, L., Alonzo, V. (2006). Effects of combining extracts (from propolis or Zingiber officinale) with clarithromycin on Helicobacter pylori. Phytotherapy research : PTR, 20(3), 187–190. [CrossRef] 12. Patel, S. S., Ray, S., Thakur, R. S. (2006). Formualtion and evaluation of floating drug delivery system containing clarithromycin for Helicobacter pylori. Acta poloniae pharmaceutica, 63(1), 53–61. 13. Nama, M., Gonugunta, C. S., Reddy Veerareddy, P. (2008). Formulation and evaluation of gastroretentive dosage forms of Clarithromycin. AAPS PharmSciTech, 9(1), 231–237. [CrossRef] 14. Rajinikanth, P. S., Mishra, B. (2008). Floating in situ gelling system for stomach site-specific delivery of clarithromycin to eradicate H. pylori. Journal of controlled release : official journal of the Controlled Release Society, 125(1), 33–41. [CrossRef] 15. Rajinikanth, P. S., Mishra, B. (2009). Stomach-site specific drug delivery system of clarithromycin for eradication of Helicobacter pylori. Chemical & pharmaceutical bulletin, 57(10), 1068–1075. [CrossRef] 16. Jain, S. K., Jangdey, M. S. (2009). Lectin conjugated gastroretentive multiparticulate delivery system of clarithromycin for the effective treatment of Helicobacter pylori. Molecular pharmaceutics, 6(1), 295–304. Patel, S. S., Ray, S., & Thakur, R. S. (2006). Formualtion and evaluation of floating drug delivery system containing clarithromycin for Helicobacter pylori. Acta poloniae pharmaceutica, 63(1), 53–61. [CrossRef] 17. Gattani, S. G., Savaliya, P. J., Belgamwar, V. S. (2010). Floating-mucoadhesive beads of clarithromycin for the treatment of Helicobacter pylori infection. Chemical & pharmaceutical bulletin, 58(6), 782–787. [CrossRef] 18. Vaghani, S. S., Patel, M. M. (2011). pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release. Drug development and industrial pharmacy, 37(10), 1160–1169. [CrossRef] 19. Mohammadi, G., Nokhodchi, A., Barzegar-Jalali, M., Lotfipour, F., Adibkia, K., Ehyaei, N., Valizadeh, H. (2011). Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids and surfaces. B, Biointerfaces, 88(1), 39–44. [CrossRef] 20. Pereira, J. M., Mejia-Ariza, R., Ilevbare, G. A., McGettigan, H. E., Sriranganathan, N., Taylor, L. S., Davis, R. M., Edgar, K. J. (2013). Interplay of degradation, dissolution and stabilization of clarithromycin and its amorphous solid dispersions. Molecular pharmaceutics, 10(12), 4640–4653. [CrossRef] 21. Rose, W. E., Otto, D. P., Aucamp, M. E., Miller, Z., de Villiers, M. M. (2015). Prevention of biofilm formation by methacrylate-based copolymer films loaded with rifampin, clarithromycin, doxycycline alone or in combination. Pharmaceutical research, 32(1), 61–73. [CrossRef] 22. Li, Y., Su, T., Zhang, Y., Huang, X., Li, J., Li, C. (2015). Liposomal co-delivery of daptomycin and clarithromycin at an optimized ratio for treatment of methicillin-resistant Staphylococcus aureus infection. Drug delivery, 22(5), 627–637. [CrossRef] 23. Cong, Y., Geng, J., Wang, H., Su, J., Arif, M., Dong, Q., Chi, Z., Liu, C. (2019). Ureido-modified carboxymethyl chitosan-graft-stearic acid polymeric nano-micelles as a targeted delivering carrier of clarithromycin for Helicobacter pylori: Preparation and in vitro evaluation. International journal of biological macromolecules, 129, 686–692. [CrossRef] 24. Soisuwan, S., Teeranachaideekul, V., Wongrakpanich, A., Langguth, P., Junyaprasert, V. B. (2019). Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 137, 68–76.

Subjects

Retrieval Number
100.1/ijapsr.B4014023223
ISSN
2582-7618
Journal Website
https://www.ijapsr.latticescipub.com/