Published January 31, 2023 | Version 2.0
Dataset Open

Understanding cirrus clouds using explainable machine learning

  • 1. Institute of Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 2. Image Processing Laboratory, Universitat de València, València, Spain

Description

This repository contains the data for the paper:

Authors: Kai Jeggle , David Neubauer , Gustau Camps-Valls and Ulrike Lohmann
Titel: Understanding cirrus clouds using explainable machine learning
Date: 2023

Note that the scripts can be found in the accompanying package (https://github.com/tabularaza27/explaining_cirrus)

Notes

v1 was causing extraction errors for some users, please use v2.

Files

Readme.txt

Files (11.4 GB)

Name Size Download all
md5:12e94ddac334fedf378f0f44c29fd1e3
11.4 GB Download
md5:4a12750138019d4d5315798f7f16350a
6.0 kB Preview Download

Additional details

Funding

iMIRACLI – innovative MachIne leaRning to constrain Aerosol-cloud CLimate Impacts (iMIRACLI) 860100
European Commission