Published May 15, 2023 | Version v1
Journal article Open

A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

Creators

Description

Kawahara, Akito Y., Storer, Caroline, Carvalho, Ana Paula S., Plotkin, David M., Condamine, Fabien L., Braga, Mariana P., Ellis, Emily A., St Laurent, Ryan A., Li, Xuankun, Barve, Vijay, Cai, Liming, Earl, Chandra, Frandsen, Paul B., Owens, Hannah L., Valencia-Montoya, Wendy A., Aduse-Poku, Kwaku, Toussaint, Emmanuel F. A., Dexter, Kelly M., Doleck, Tenzing, Markee, Amanda, Messcher, Rebeccah, Nguyen, Y-Lan, Badon, Jade Aster T., Benítez, Hugo A., Braby, Michael F., Buenavente, Perry A. C., Chan, Wei-Ping, Collins, Steve C., Rabideau Childers, Richard A., Dankowicz, Even, Eastwood, Rod, Fric, Zdenek F., Gott, Riley J., Hall, Jason P. W., Hallwachs, Winnie, Hardy, Nate B., Sipe, Rachel L. Hawkins, Heath, Alan, Hinolan, Jomar D., Homziak, Nicholas T., Hsu, Yu-Feng, Inayoshi, Yutaka, Itliong, Micael G. A., Janzen, Daniel H., Kitching, Ian J., Kunte, Krushnamegh, Lamas, Gerardo, Landis, Michael J., Larsen, Elise A., Larsen, Torben B., Leong, Jing V., Lukhtanov, Vladimir, Maier, Crystal A., Martinez, Jose I., Martins, Dino J., Maruyama, Kiyoshi, Maunsell, Sarah C., Mega, Nicolás Oliveira, Monastyrskii, Alexander, Morais, Ana B. B., Müller, Chris J., Naive, Mark Arcebal K., Nielsen, Gregory, Padrón, Pablo Sebastián, Peggie, Djunijanti, Romanowski, Helena Piccoli, Sáfián, Szabolcs, Saito, Motoki, Schröder, Stefan, Shirey, Vaughn, Soltis, Doug, Soltis, Pamela, Sourakov, Andrei, Talavera, Gerard, Vila, Roger, Vlasanek, Petr, Wang, Houshuai, Warren, Andrew D., Willmott, Keith R., Yago, Masaya, Jetz, Walter, Jarzyna, Marta A., Breinholt, Jesse W., Espeland, Marianne, Ries, Leslie, Guralnick, Robert P., Pierce, Naomi E., Lohman, David J. (2023): A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nature Ecology & Evolution 7 (6): 903-913, DOI: 10.1038/s41559-023-02041-9, URL: http://dx.doi.org/10.1038/s41559-023-02041-9

Files

source.pdf

Files (5.9 MB)

Name Size Download all
md5:2f42ee088aaea13141ce7d1507c16280
5.9 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:2F42EE08FFAEA131FFCE7D15FFC1FF80

Related works

Cites
Publication: 10.1101/2022.09.22.509088 (DOI)
Publication: 10.1101/038695 (DOI)
Has part
Figure: 10.5281/zenodo.7963520 (DOI)
Figure: 10.5281/zenodo.7963522 (DOI)
Figure: 10.5281/zenodo.7963524 (DOI)

References

  • 1. Chazot, N. et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst. Biol. 68, 797-813 (2019).
  • 2. Allio, R. et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution.Syst. Biol. 69, 38-60 (2020).
  • 3. Boggs, C. L., Watt,W. B. & Ehrlich, P. R. Butterflies: Ecology and Evolution Taking Flight (Universityof Chicago Press, 2003).
  • 4. Braby,M. F., Trueman, J. W.H. & Eastwood,R. When and where did troidine butterflies (Lepidoptera:Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous. Invertebr. Syst. 19, 113-143 (2005).
  • 5. Janz,N. & Nylin, S. Butterflies and plants: aphylogenetic study. Evolution 52, 486-502 (1998).
  • 6. Braga,M. P., Landis, M. J., Nylin, S., Janz,N. & Ronquist, F. Bayesian inference of ancestral host-parasite interactions under a phylogenetic model of host repertoire evolution. Syst. Biol. 69, 1149-1162 (2020).
  • 7. Braga,M. P., Janz, N., Nylin, S., Ronquist, F. & Landis, M. J. Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants. Ecol.Lett. 24, 2134-2145 (2020).
  • 8. Espeland, M. et al. Acomprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770-778.e5 (2018).
  • 9. Wahlberg, N., Wheat, C. W. & Pena, C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS ONE 8, e80875 (2013).
  • 10. Linnert,C. et al. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 5, 4194 (2014).
  • 11. Domingo, L., Tomassini, R. L., Montalvo, C. I., Sanz-Perez,D. & Alberdi, M. T.The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Sci.Rep. 10, 1608 (2020).
  • 12. Carrillo, J. D. et al. Disproportionateextinction of South American mammals drove the asymmetry of the Great American Biotic Interchange. Proc. Natl Acad. Sci. USA 117, 26281-26287 (2020).
  • 13. Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F. & Morlon, H. Dispersal is a major driver of the latitudinaldiversity gradient of Carnivora. Glob. Ecol. Biogeogr. 24, 1059-1071 (2015).
  • 14. Condamine,F. L., Silva-Brandao,K. L., Kergoat, G. J. & Sperling, F. A. H. Biogeographic and diversificationpatterns of neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia.BMC Evol. Biol. 12, 82 (2012).
  • 15. Chazot, N. et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 12, 5717 (2021).
  • 16. Magallon, S., Gomez-Acevedo,S., Sanchez-Reyes, L. L. & Hernandez-Hernandez, T.Ametacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437-453 (2015).
  • 17. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314 (2018).
  • 18. Li, H.-T. et al. Origin of angiosperms and the puzzle of the Jurassic gap.Nat.Plants 5, 461-470 (2019).
  • 19. Heikkila, M., Kaila,L., Mutanen, M., Pena, C. & Wahlberg, N. Cretaceous originand repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B Biol. Sci. 279, 1093-1099 (2011).
  • 20. Braga, M. P., Guimaraes, P. R., Wheat, C. W., Nylin, S. & Janz, N. Unifying host-associated diversification processes using butterfly-plant networks. Nat. Commun. 9, 5155 (2018).
  • 21. Robinson, G. S., Ackery, P. R., Kitching, I. J., Beccaloni, G. W.& Hernandez,L. M. HOSTS - A Database of the World̛s Lepidopteran Hostplants (accessed 1 August 2020); http://www.nhm.ac.uk/ourscience/data/hostplants/
  • 22. Kaliszewska, Z. A. et al. When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution 69, 571-588 (2015).
  • 23. Pierce, N. E. et al. The ecology and evolution of ant association inthe Lycaenidae (Lepidoptera).Annu.Rev. Entomol. 47, 733-771 (2002).
  • 24. Moreau, C. S. & Bell, C. D. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographical range evolution of the ants. Evolution 67, 2240-2257 (2013).
  • 25. Forister,M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442 (2015).
  • 26. Kelly, C. K. & Southwood, T.R. E. Species richness and resource availability: aphylogenetic analysis of insects associated with trees. Proc. Natl Acad.Sci. USA 96, 8013-8016 (1999).
  • 27. Kennedy, C. E. J. & Southwood,T. R. E. The number of species of insects associated with British trees: are-analysis. J. Anim. Ecol. 53, 455-478 (1984).
  • 28. Rutz, A. et al. The LOTUS initiativefor open knowledge management in natural products research.eLife 11, e70780 (2022).
  • 29. Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study of coevolution. Evolution 18, 586-608 (1965).
  • 30. Lemmon, A. R., Emme,S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727-744 (2012).
  • 31. Valencia-Montoya, W. A. et al. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc. R. Soc. B Biol. Sci. 288, 1-10 (2021).
  • 32. Toussaint, E. F. A. et al. Anchored phylogenomics illuminates the skipper butterfly tree of life. BMC Evol. Biol. 18, 101 (2018).
  • 33. Espeland, M. et al. Four hundred shades of brown: higher level phylogeny of the problematic Euptychiina (Lepidoptera, Nymphalidae, Satyrinae) based on hybrid enrichment data. Mol. Phylogenet. Evol. 131, 116-124 (2019).
  • 34. Carvalho, A. P. S. et al. Diversification is correlated with temperature in white and sulfur butterflies. Preprint at bioRxiv https://doi.org/10.1101/2022.09.22.509088 (2022).
  • 35. Kawahara, A. Y. et al. Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) basedon a new 13-locus target capture probe set. Mol. Phylogenet. Evol. 127, 600-605 (2018).
  • 36. Toussaint, E. F. A. et al. Afrotropics on the wing: phylogenomics and historical biogeography of awl and policeman skippers. Syst. Entomol. 46, 172-185 (2021).
  • 37. Nunes,R. et al. Predictors of sequence capture in alarge-scale anchored phylogenomics project.Front. Ecol.Evol. 10, 943361 (2022).
  • 38. Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl Acad.Sci. USA 116,22657-22663 (2019).
  • 39. Regier,J. C. etal. Alarge-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies).PLoS ONE 8, 1-23 (2013).
  • 40. Mayer, C. et al. Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genesfrom old museum specimens. Syst. Entomol. 46, 649-671 (2021).
  • 41. Rota, J. et al. The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): assessing the potential causes and consequences. Syst. Entomol. 47, 531-550 (2022).
  • 42. Breinholt,J. W. et al. Resolving relationships among the megadiverse butterflies and moths with a novel pipeline for anchored phylogenomics. Syst. Biol. 67, 78-93 (2018).
  • 43. Regier,J. C. et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463, 1079-1083 (2010).
  • 44. Zwick,A. Degeneracy coding web service. GitHub https://github. com/carlosp420/degenerate-dna (2010).
  • 45. Minh, B. Q. et al. IQ-TREE 2: new models and eFFicient methods for phylogenetic inference in the genomic era.Mol. Biol. Evol. 37, 1530-1534 (2020).
  • 46. Minh, B. Q., Nguyen, M. A. T. & von Haeseler,A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188-1195 (2013).
  • 47. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522 (2018).
  • 48. Guindon,S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321 (2010).
  • 49. Strimmer, K. & von Haeseler,A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl Acad.Sci. USA 94, 6815 (1997).
  • 50. Smith, S. A. & O̍Meara, B. C. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690 (2012).
  • 51. Parham, J. F. et al. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346-359 (2012).
  • 52. de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera:Papilionoidea). Zootaxa 4270, 1-63 (2017).
  • 53. Graur, D. & Martin, W. Reading the entrails of chickens:molecular timescales of evolution and the illusion of precision. Trends Genet. 20, 80-86 (2004).
  • 54. Foster, C. S. et al. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst. Biol. 66, 338-351 (2017).
  • 55. Shields, O. Fossil butterflies and the evolution of Lepidoptera. J. Res. Lepid. 15, 132-143 (1976).
  • 56. Wahlberg,N. That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Syst. Biol. 55, 703-714 (2006).
  • 57. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543-e89543 (2014).
  • 58. Rabosky, D. L. et al. BAMMtools: an Rpackage for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701-707 (2014).
  • 59. Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Mesquite https://www.mesquiteproject.org (2018).
  • 60. Beaulieu, J. M. & O̍Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583-601 (2016).
  • 61. Beaulieu, J., O̍ Meara,B., Caetano, D., Boyko, J. & Vasconcelos, T. Package 'hisse̍. CRAN https://CRAN.R-project.org/package=hisse (2021).
  • 62. Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340-355 (2015).
  • 63. van Nieukerken, E. J. etal. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 212 (2011).
  • 64. Cong, Q., Zhang, J., Shen,J. & Grishin, N. V. Fifty new genera of Hesperiidae (Lepidoptera).Insecta Mundi 2019, 0731 (2019).
  • 65. Shirey, V.et al. LepTraits 1.0 Aglobally comprehensive dataset of butterfly traits. Sci. Data. 9, 382 (2022).
  • 66. Pinkert, S., Barve, V., Guralnick, R. P. & Jetz,W. Global geographical and latitudinal variation in butterfly species richness captured through acomprehensive country- level occurrence database. Glob. Ecol. Biogeogr. 31, 830-839 (2022).
  • 67. Savela,M. Lepidoptera and some other life forms.FUNET https://www.funet.fi/pub/sci/bio/life/intro.html (2021).
  • 68. Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction,and cladogenesis. Syst. Biol. 57, 4-14 (2008).
  • 69. Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the northern hemisphereplant clade Caprifolieae. J.Biogeogr. 36, 2324-2337 (2009).
  • 70. Beeravolu,C.R.& Condamine,F.L.An extended maximum likelihoodinference of geographicrangeevolution bydispersal, local extinction andcladogenesis.Preprint at bioRxiv https://doi.org/ 10.1101/038695 (2016).
  • 71. Matzke,N. J. BioGeoBEARS: biogeography with Bayesian (and likelihood) evolutionary analysis in Rscripts (GitHub, 2018).
  • 72. Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).
  • 73. Udvardy,M. D. F. Aclassification of the biogeographical provinces of the world. Morges (Switzerland):International Union of Conservation of Nature and Natural Resources. IUCN Occasional Paper no. 18 (IUCN, 1975).
  • 74. Ree, R. H. Detecting the historical signature of key innovations using stochastic models of characterevolution and cladogenesis. Evolution 59, 257-265 (2005).
  • 75. Ronquist,F. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography.Syst.Biol. 46, 195-203 (1997).
  • 76. Li, X. et al. Adiversificationrelay race from Caribbean-Mesoamerica to the Andes: historical biogeography of Xylophanes hawkmoths. Proc. R. Soc. B Biol. Sci. 289, 20212435 (2022).
  • 77. Saito,M. U., Jinbo, U., Yago, M., Kurashima,O. & Ito, M. Larval host records of butterflies in Japan. Ecol. Res. 31, 491-491 (2016).
  • 78. Veenakumari,K., Mohanraj,P. & Sreekumar,P.Host plant utilization by butterfly larvae in the Andaman and Nicobar Islands (Indian Ocean). J. Insect Conserv. 1, 235-246 (1997).
  • 79. Kunte, K. Additions to known larval host plants of Indian butterflies. J.Bombay Nat. Hist. Soc. 103, 119-122 (2006).
  • 80. Kalesh, S. & Prakash,S. K. Additions to larval host plants of butterflies of the Western Ghats, Kerala,Southern India (Rhopalocera, Lepidoptera). Part 1. J. Bombay Nat. Hist. Soc. 104, 235-238 (2007).
  • 81. Kalesh, S. & Prakash,S. K. Additions to larval host plants of butterflies of the Western Ghats, Kerala,Southern India (Rhopalocera, Lepidoptera). Part 2. J. Bombay Nat.Hist. Soc. 112, 111-113 (2015).
  • 82. Naik, D. & Mustak,M. S. Additions to larval host plants of Indian butterflies (Lepidoptera).J.Bombay Nat. Hist. Soc. 112, 181-183 (2015).
  • 83. Karmakar,T.etal. Earlystages andlarval host plants of some northeastern Indian butterflies.J.Threat.Taxa 10, 11780-11799 (2018).
  • 84. Nitin, R. et al. Larval host plants of the butterflies of the Western Ghats, India. J. Threat. Taxa 10, 11495-11550 (2018).
  • 85. Edger,P.P.etal.The butterflyplantarms-race escalated bygeneand genomeduplications.Proc.Natl Acad.Sci.USA 112, 8362 (2015).
  • 86. Kembel, S. W. et al. Picante: Rtools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464 (2010).
  • 87. Beckett, S. J. Improvedcommunity detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).
  • 88. Dormann,C. F., Gruber, B. & Frund, J. Introducing the bipartite package:analysing ecologicalnetworks. R News 8, 8-11 (2008).
  • 89. R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2009).
  • 90. Revell, L. J. phytools: an Rpackage for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223 (2012).
  • 91. Wahlberg, N. et al. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B Biol. Sci. 272, 1577-1586 (2005).