Published May 2, 2023 | Version v1
Dataset Open

Super-Resolved FRET Imaging by Confocal Fluorescence-Lifetime Single-Molecule Localization Microscopy

  • 1. Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, C1425FQD Argentina
  • 2. Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056 Switzerland
  • 3. Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700 Switzerland
  • 4. PicoQuant GmbH, Rudower Chaussee 29 (IGZ), 12489 Berlin, Germany
  • 5. Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, C1425FQD Argentina Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires, C1428EHA Argentina

Description

FRET-based methods are a special tool for detecting interactions between (bio)molecules and their immediate environment. The spatial distribution of molecular interactions and functional states can be seen using FLIM (Fluorescence Lifetime IMaging) and FRET imaging. The spatial information, accuracy, and dynamic range of the observed signals are, however, constrained by the fact that conventional FLIM and FRET imaging only provides average information over an ensemble of molecules within a diffraction-limited volume. On the other hand, conventional Single Molecule Localization Microscopy (SMLM) relies on highly sensitive multi-pixel detectors (e.g. sCMOS or EM-CCD) whose time resolution is not suitable for fluorescence lifetime measurements.

Here, we demonstrate a method for obtaining super-resolved FRET imaging using confocal fluorescence-lifetime single-molecule localization microscopy. The proof of concept was carried out using a DNA origami sample for performing DNA-PAINT measurements in combination with fluorogenic probes for reducing background signal. With this method, We show that FRET events separated by sub-diffraction distances can be distinguished based on lifetime modifications.

Files

Ch2_PAINTepi_532nm_13mW(40F4)_spli2channels_100ms_1x1__1_MMStack_Pos0.ome.tif

Files (45.4 GB)

Name Size Download all
md5:0f438bc0ce3d1583ccee1e15872fd91e
1.3 GB Download
md5:6ff05dfd1041496ddbb4d77d8f3dec25
874.2 MB Download
md5:323aa2adbfb33d31aaeffcc15d63e0f9
1.1 GB Download
md5:cbb831fd547b25c3d17940dbf9d4350c
863.2 MB Download
md5:e02fc2ecfa2a6754287714da204afdf3
550.7 MB Download
md5:b82838b4a32a856b02605104555d3f96
429.1 MB Download
md5:696022486f7ec166505706654420c2d4
488.4 MB Download
md5:54a53bbd18c998d491cb75d491e1bbc2
391.0 MB Download
md5:a734ba2fa3d4db8dbde152756da8d4f7
262.4 MB Download
md5:b8ea1b19ffeea926763171fa28f1e912
165.6 MB Download
md5:66b0d8898edb16c6d7dc91867f3768db
705.3 MB Download
md5:78023f5e994a406bb17f68e8873cbff6
495.7 MB Download
md5:604ad9a83149c958cc5d7443af1b0287
2.7 GB Download
md5:5a7079307ee8e44afddf6a2e3356a3b0
2.1 GB Download
md5:f92d61ce91163288941434f2bd718395
1.1 GB Download
md5:0ac7e9f6bfbbabe3488d26c78c435a3b
1.0 MB Download
md5:a9453ce6b670bed841bc8e10bc4b7667
1.6 GB Download
md5:c324b82ecbd8636760e29b98a0a98786
1.0 MB Download
md5:477158f28a77c15b9b1820f199256b4b
733.6 MB Download
md5:642f517b64b92078784070862dee1b28
1.0 MB Download
md5:edaa30049a8c52ec74c74d158032eeda
1.0 GB Download
md5:c3b95322a932aac6e80f8b42bec1d32a
1.0 MB Download
md5:3b4e47059966286b704445fe6881ae73
1.6 GB Download
md5:c9d2a5a9fe90f121f5b22835eb367f51
1.0 MB Download
md5:6b2e3c09ef1ceee74bfe939dad8da71c
313.8 MB Download
md5:a69250c1ecbfae5fd3c3b89c3423193c
85.5 kB Download
md5:692aeab3172a4ebc84e0b5c4a05a8643
1.1 GB Download
md5:46a0be4e04f378635533422969c04a07
1.0 MB Download
md5:1627e6e88a960422074e08acdc1e96e5
1.1 GB Download
md5:592e410ca248fa108999eeb0190d1ba4
1.0 MB Download
md5:e599d98e16e6b487db44383e8f811893
1.6 GB Download
md5:89c243fe0bdc7ce3bb5cdaeb40bf9e09
1.5 GB Download
md5:ddef94d271112b4141d0f776712436a2
1.1 GB Download
md5:e991c90f647ac95bf7d807ca6f79125d
1.9 GB Download
md5:33bad568aa65c1d0a756ab6da19c5365
1.3 GB Download
md5:ae5a7b20186bce9010e2e49abf36e115
990.9 MB Download
md5:4b58984a3aa31689808679a3101a4370
1.5 GB Download
md5:9a548a386239ee5b33898f8b0c8897b7
1.0 GB Download
md5:6f98fa6035d8f5715f3193fb77630843
1.0 GB Download
md5:61272996f9e52246372fc0042ec54e71
4.3 GB Preview Download
md5:65e5a63ac709743ddb33ff7db8cf7437
3.3 GB Preview Download
md5:b1fa3aa0a541e0aa63d509f09e6723fc
1.9 GB Preview Download
md5:275a39b8c98f65c156221719897e8a7b
632.9 MB Preview Download
md5:13d28ef8ecbdfae985787b60f2e92f12
1.2 GB Preview Download
md5:01c776fa47d3e7c671aba4cd7ce668d0
1.2 GB Preview Download
md5:eaf2082f76ebd984b26de5be267fb454
1.6 kB Preview Download

Additional details

Related works

Is supplement to
Journal article: 10.1002/smtd.202201565 (DOI)

Funding

Swiss National Science Foundation
NCCR Bio-Inspired Materials: Using Concepts from Nature to Create ‚Smart' Materials (phase III) 51NF40-205603