Published May 22, 2023 | Version v1
Dataset Open

Breast MRI molecular cancer subtype

  • 1. Radboud University Medical Center

Description

This data set is part of the public development data for the 2023 Automated Universal Classification Challenge (AUC23). The data set concerns the classification of breast cancer molecular subtypes on dynamic contrast-enhanced magnetic resonance imaging (MRI) and was derived from Duke Hospital. The data set is a subset of the data originally introduced and described by Saha et al. (2018), with no additional images or patient information. Data was restructured in compliance with the AUC23 challenge format. The dataset is a single-institutional, retrospective collection of 737 biopsy-confirmed patients from 1 January 2000 to 23 March 2014 with invasive breast cancer and available pre-operative MRI at Duke Hospital.

Images are 3D tensors:

  • 0: 3D T1-subtraction dynamic contrast-enhanced MRI

Classification labels:

  • 0: Luminal A, estrogen-receptor (ER) and/or progesterone-receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) negative
  • 1: Luminal B, ER and/or PR negative, HER2 positive
  • 2: HER2, ER and PR negative, HER2 positive
  • 3: Triple negative, ER, PR, and HER2 negative

Folder structure:

imagesTr (root folder with all patients and studies)
    ├── Breast_MRI_0001_0000.mha  (3D T1-subtraction MRI imaging for study 0001)
    ├── Breast_MRI_0003_0000.mha  (3D T1-subtraction MRI imaging for study 0003)
    ├── ...

Please cite the following article if you are using the Duke-Breast-Cancer-MRI Dataset:

A. Saha, M. R. Harowicz, L. J. Grimm, C. E. Kim, S. V. Ghate, R. Walsh, M. A. Mazurowski, "A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features". Br J Cancer. 2018 Aug;119(4):508-516. doi: 10.1038/s41416-018-0185-8. Epub 2018 Jul 23. PMID: 30033447; PMCID: PMC6134102.

Files

breast-mri-molecular-cancer-subtype.zip

Files (35.5 GB)

Name Size Download all
md5:00309c90d7b85d71f9aa640393587b6b
35.5 GB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.1038/s41416-018-0185-8 (DOI)

References

  • Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, Mazurowski MA. A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. Br J Cancer. 2018 Aug;119(4):508-516. doi: 10.1038/s41416-018-0185-8. Epub 2018 Jul 23. PMID: 30033447; PMCID: PMC6134102.