Published June 1, 2023 | Version v1.1
Dataset Open

River Sediment Database (RivSed)

  • 1. University of Pittsburgh
  • 2. University of North Carolina
  • 3. Colorado State University

Description

The River Sediment Database (RivSed) database contains surface suspended sediment concentrations (SSC) derived from Landsat 5, 7, and 8 Level 1 Collection 1 surface reflectance from all rivers in the contiguous USA that are ~60 meters wide or greater. SSC represent spatially integrated "reach" median concentrations over the footprint of NHDPlusV2 centerlines where high quality river water pixels were detected within each Landsat image from 1984-2018. This is built in the River Surface Reflectance database (RiverSR) also in Zenodo (Gardner et al,. 2020 Geophysical Research Letters). 

The paper associated with RivSed: Gardner, J., Pavelsky, T. M., Topp, S., Yang, X., Ross, M. R., & Cohen, S. (2023). Human activities change suspended sediment concentration along rivers. Environmental Research Letters. https://iopscience.iop.org/article/10.1088/1748-9326/acd8d8

 

 

Files:

1) Metadata (riverSed_v1.0_metadata.pdf): Description of all data files associated with this repository. 

2) RiverSed (RiverSed_USA_v1.1.txt). Table of  SSC  and associated data that is joinable to nhdplusv2_modified_v1.0.shp based on the "ID" column and to the original NHDplusV2 flowlines with the "COMID" column.

3) Shapefile of river centerlines to which the reflectance data can be attached (nhdplusv2_modified_v1.0.shp).

4) Shapefile of the reach polygons associated with each nhdplusv2_modified reach. (nhdplusv2_polygons_v1.0.shp).

5) The look up table for reach IDs of original (COMID) and modified (ID) NHDplusV2 centerlines. (COMID_ID.csv). Short reaches were joined together to optimize for remote sensing data collection and make more consistent reach lengths.

6) SSC-Landsat matchup database with extended metadata on locations and in-situ data derived from Aquasat (Ross et al., 2019) (Aquasat_TSS_v1.1.csv)

7) The final training data used to build the xgboost machine learning model (train_clean_xgb_v1.1.csv)

8) The xgboost model that can make SSC predictions over inland waters in USA using Landsat bands/band combinations (finalmodel_xgb_v1.1.rds and .RData). The model can only be loaded in R for now.

 

Files

Aquasat_TSS_v1.1.csv

Files (5.1 GB)

Name Size Download all
md5:26bc9f9080fe9abef2b02b343a921adb
71.2 MB Preview Download
md5:6eb572edda5ebe0f9893ed5614c59bbe
1.0 MB Preview Download
md5:5d8965e2b29117f09aa414fa4ed774f4
1.5 MB Download
md5:64225e34e67ec48278fdc3b9182ee773
1.5 MB Download
md5:6106c379bf13c5aa04244eb2ebcdcf64
132.3 MB Download
md5:e729936bf5360b37a15365fc295a1901
143 Bytes Download
md5:af6d59494312a03ef494d6ea711757a5
17.0 MB Download
md5:951414a370d2540c6d2b3b9b53f65b0f
271.7 kB Download
md5:ecebd618299bd4cda8ae0f80e8c288e4
338.1 kB Download
md5:e729936bf5360b37a15365fc295a1901
143 Bytes Download
md5:af55adbc36952502407ff5c49eb34f43
107.9 MB Download
md5:045387d1ebaefe803b80ae56e319ff47
270.6 kB Download
md5:b9714ca02c540c0c1e740f77a878a628
873.8 kB Preview Download
md5:920b7a294704934c62378e0c15cc4230
4.8 GB Preview Download
md5:13cfd00523360a00f45f03cc100df9c2
3.9 MB Preview Download

Additional details

Funding

U.S. National Science Foundation
Earth Sciences Postdoctoral Fellowship Award 9504813