Data for: Machine learning-accelerated simulations enable heuristic-free surface reconstruction
Description
This is the dataset for the publication "Machine learning-accelerated simulations enable heuristic-free surface reconstruction", by X. Du, J.K. Damewood, J.R. Lunger, R. Millan, B. Yildiz, L. Li, and R. Gómez-Bombarelli. The repository contains the density-functional theory (DFT) data used to train the neural network force fields (NFF), selected results from our GaN(0001) and SrTiO3(001) Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) runs, and Jupyter notebooks used for analysis and plots. To run the .ipynb
's, you will need to install surface-sampling and NeuralForceField from the Rafael Gomez-Bombarelli Group @ MIT.
Files
DL_TiO2_analysis.ipynb
Files
(282.0 MB)
Name | Size | Download all |
---|---|---|
md5:5252675b50fc4fc33d3a1d5e22020473
|
7.2 kB | Preview Download |
md5:5771dd0c7b5e630be0955bb226cb20e5
|
521.0 kB | Preview Download |
md5:df69395cd5165bf1f55beda670dc4be4
|
90.7 kB | Preview Download |
md5:c620dcc0c3c3cac77b08018865c87e11
|
3.6 kB | Download |
md5:fba03a7d409f3f202a06a2d5011917df
|
279.7 MB | Preview Download |
md5:187699116b9ef6a2ed64228ecfd6835f
|
1.3 MB | Preview Download |
md5:7efdb24fdf7bc62b510118ae39cb98b1
|
354.8 kB | Preview Download |
Additional details
Related works
- Is cited by
- Preprint: 10.48550/arXiv.2305.07251 (DOI)