Published October 19, 2020 | Version v1
Journal article Open

Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface

Description

Light-emitting diodes based on halide perovskites have recently reached external quantum efficiencies of over 20%. However, the performance of visible perovskite light-emitting diodes has been hindered by non-radiative recombination losses and limited options for charge-transport materials that are compatible with perovskite deposition. Here, we report efficient, green electroluminescence from mixed-dimensional perovskites deposited on a thin (~1 nm) lithium fluoride layer on an organic semiconductor hole-transport layer. The highly polar dielectric interface acts as an effective template for forming high-quality bromide perovskites on otherwise incompatible hydrophobic charge-transport layers. The control of crystallinity and dimensionality of the perovskite layer is achieved by using tetraphenylphosphonium chloride as an additive, leading to external photoluminescence quantum efficiencies of around 65%. With this approach, we obtain light-emitting diodes with external quantum efficiencies of up to 19.1% at high brightness (>1,500 cd m−2).

Files

Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface.pdf

Additional details

Funding

ESTEEM3 – Enabling Science and Technology through European Electron Microscopy 823717
European Commission