Published September 16, 2022 | Version v3
Dataset Open

Deep Reinforcement Learning for Data-Driven Adaptive Scanning in Ptychography

  • 1. Humboldt Universität zu Berlin, Institut für Physik & IRIS Adlershof, Berlin, Germany

Description

These are the data sets used for the publication https://arxiv.org/abs/2203.15413.

In more detail, the DataFile.pkl files in the training_data and testing_data folders are the actual data, including diffraction patterns, the corresponding reconstructions and the used illumination probe. The folders dwcnt_training_data and dwcnt_testing_data include the data sets of the simulated double-walled carbon nanotube.

The reconstruction folder includes the source code of the reconstruction algorithm ROP and the used parameter files.

The results folder includes the updated weights of the network model and the reconstructed potentials for the 25 test data sets used in the comparison of the publication.

The sequence_grid.npy file stores the sparse grid scanning sequence used for initialization and comparison as described in the publication. The dwcnt_sequence_grid.npy file is the corresponding file for the double-walled carbon nanotube data.

If you want more information, please contact the corresponding author of the publication, at schlozma@hu-berlin.de. 

Files

dwcnt_testing_data.zip

Files (28.0 GB)

Name Size Download all
md5:e4ebef444b84d6ccb5d60a0750d88fae
6.8 kB Download
md5:98fb869430bfdffcb96a69acda63c0ef
461.1 MB Preview Download
md5:8ee6ed306fdb9df733d9e7c4ce200dfe
479.3 MB Preview Download
md5:b74d4c3274988a39605ef777ac048b3c
43.7 kB Preview Download
md5:f253d0dd3d616fa5491f579358a3c44a
353.1 MB Preview Download
md5:50714d0ba074c61358baf4c57c0b3338
2.2 kB Download
md5:828b9403e3f8e074540967b34660f86a
3.4 GB Preview Download
md5:0f2321ef96e8daf5b8674d8b15636e7a
23.4 GB Preview Download