On the Modulation of Biocompatibility of Hydrogels with Collagen and Guar Gum by Adding Molybdenum/ aminoacid-based Metal-organic Frameworks
Creators
- 1. Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, México.
- 2. Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Av. Universidad #940, C.P. 20131, Aguascalientes, México.
Contributors
Contact person:
- 1. Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, México.
Description
In this work, we report the synthesis of molybdenum metal-organic frameworks (Mo-MOFs) using 1,3,5-benzenetricarboxylic acid and the amino acids L-phenylalanine, L- tryptophan, and L-histidine as ligands. They were incorporated in hydrogel matrixes comprised of collagen and guar gum to obtain composite hydrogels. The effect of chemical structure of Mo-MOFs on the structure, physicochemical properties and in vitro biocompatibility of hydrogels was studied. These biomaterials showed a super absorbent performance (higher than 2000 ± 169%) and a high degree of reticulation (higher than 75 ± 6%). The microstructure of the composites showed a granular morphology with some porosity. These composites were degraded entirely by hydrolysis at pH 5 and pH 7 at room temperature in time lapses shorter than 15 days. Also, they were biocompatible with porcine dermis fibroblasts not showing cytotoxic effects up to 48 h of incubation allowing its proliferation, and it was observed that the MOF containing L-tryptophan improved notably the biocompatibility of the collagen/guar gum matrix. Finally, the matrixes were tested as vehicles for cell encapsulation and release. The slow-release rates show that fibroblasts tend to remain inside the hydrogel matrixes. Thus, these materials are more suitable for cell scaffolds and tissue engineering applications such as wound healing dressings. |
Files
83467.pdf
Files
(560.9 kB)
Name | Size | Download all |
---|---|---|
md5:a542bc774bf4253b1a1a1676d7ce2ada
|
560.9 kB | Preview Download |
Additional details
References
- [1] N. Özen, Z. Özbaş, B. İzbudak, S. Emik, B. Özkahraman, A. Bal-Öztürk, (2022). Boric acid-impregnated silk fibroin/gelatin/hyaluronic acid-based films for improving the wound healing process. J. Appl. Polym. Sci., 139: 51715.
- [2] R. Kapukaya and O. Ciloglu, (2020). Treatment of chronic wounds with polyurethane sponges impregnated with boric acid particles: A randomised controlled trial. Int. Wound J., 17: 1159–1165.
- [3] P. F. Nur, T. Pınar, P. Uğur, Y. Ayşenur, E. Murat and Y. Kenan, (2021). Fabrication of polyamide 6/honey/boric acid mats by electrohydrodynamic processes for wound healing applications Polyamide 6/Honey/Boric Acid Bioactive Fibers. Mater. Today Commun., 29: 102921.
- [4] L. Chen, (2019). Nursing Utility and Relevant Mechanism of Boric Acid in Promoting Wound Healing in Diabetic Mice. J. Pharm. Sci., Pages 181–185.
- [5] W. Ma, T. Zhang, R. Li, Y. Niu, X. Yang, J. Liu, Y. Xu and C. M. Li, (2020). Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. J. Colloid Interface Sci., 559: 313–323.
- [6] Y. Wan, J. Fang, Y. Wang, J. Sun, Y. Sun, X. Sun, M. Qi, W. Li, C. Li, Y. Zhou, L. Xu, B. Dong and L. Wang, (2021). Antibacterial Zeolite Imidazole Frameworks with Manganese Doping for Immunomodulation to Accelerate Infected Wound Healing. Adv. Healthc. Mater., 10: 2101515.
- [7] Z. Wu, H. Zhuang, B. Ma, Y. Xiao, B. Koc, Y. Zhu and C. Wu, (2021). Manganese-Doped Calcium Silicate Nanowire Composite Hydrogels for Melanoma Treatment and Wound Healing. Research, Pages 1–12.
- [8] S.K. Jaganathan & M. P.Mani, (2019). Electrospinning synthesis and assessment of physicochemical properties and biocompatibility of cobalt nitrate fibers for wound healing applications. An. Acad. Bras. Cienc., 91: 1–12.
- [9] Q. Shi, X. Luo, Z. Huang, A. C. Midgley, B. Wang, R. Liu, D. Zhi, T. Wei, X. Zhou, M. Qiao, J. Zhang, D. Kong and K. Wang, (2019). Cobalt-mediated multi-functional dressings promote bacteria-infected wound healing. Acta Biomater., 86: 465–479.
- [10] J. Li, F. Lv, J. Li, Y. Li, J. Gao, J. Luo, F. Xue, Q. Ke and H. Xu, (2020). Cobalt-based metal–organic framework as a dual cooperative controllable release system for accelerating diabetic wound healing. Nano Res., 13: 2268–2279.
- [11] E.J. Baran, (1985). Química Bioinorgánica. McGraw-Hill, Madrid.
- [12] J. Indrakumar, P. Balan, P. Murali, A. Solaimuthu, A. N. Vijayan and P. S. Korrapati, (2022). Applications of molybdenum oxide nanoparticles impregnated collagen scaffolds in wound therapeutics. J Trace Elem. Med. Biol., 72: 126983.
- [13] X. T. He, X. Li, M. Zhang, B. M. Tian, L. J. Sun, C. S. Bi, D. K. Deng, H. Zhou, H. L. Qu, C. Wu and F. M. Chen, (2022). Role of molybdenum in material immunomodulation and periodontal wound healing: Targeting immunometabolism and mitochondrial function for macrophage modulation. Biomaterials, 283: 121439.
- [14] C. E. Castañeda-Calzoncit, D. A. Cabrera-Munguia, J. A. Claudio-Rizo, D. A. Solís-Casados and C. M. López-Badillo, (2022). Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived from PET: Synthesis and Characterization. Asian J. Appl. Sci. Technol., 06: 25–34.
- [15] J. A. Claudio-Rizo, N. G. Hernandez-Hernandez, L. F. Cano-Salazar, T. E. Flores-Guía, F. N. de la Cruz-Durán, D. A. Cabrera-Munguía and J. J. Becerra-Rodríguez, (2021). Novel semi-interpenetrated networks based on collagen-polyurethane-polysaccharides in hydrogel state for biomedical applications. J. Appl. Polym. Sci., 138: 49739.
- [16] E. E. Lopéz-Martínez, J. A. Claudio-Rizo, M. Caldera-Villalobos, J. J. Becerra-Rodríguez, D. A. Cabrera-Munguía, L. F. Cano-Salazar and R. Betancourt-Galindo, (2022). Hydrogels for Biomedicine Based on Semi-Interpenetrating Polymeric Networks of Collagen/Guar Gum: Applications in Biomedical Field and Biocompatibility. Macromol. Res., 30: 384–390.
- [17] M. Caldera-Villalobos, D. A. Cabrera-Munguía, J. J. Becerra-Rodríguez and J. A. Claudio-Rizo, (2022). Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal-organic frameworks. RSC Adv., 12: 3672–3686.
- [18] J. A. Claudio-Rizo, M. Rangel-Argote, L. E. Castellano, J. Delgado, J. L. Mata-Mata and B. Mendoza-Novelo, (2017). Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Mater. Sci. Eng. C, 79: 793–801.
- [19] B. Mendoza-Novelo, J. L. Mata-Mata, A. Vega-González, J. V. Cauich-Rodríguez and Á. Marcos-Fernández, (2014). Synthesis and characterization of protected oligourethanes as crosslinkers of collagen-based scaffolds. J. Mater. Chem. B, 2: 2874–2882.
- [20] Z. H. Zhou, H. L. Wan and K. R. Tsai, (1997). Molybdenum (VI) complex with citric acid: Synthesis and structural characterization of 1 : 1 ratio citrato molybdate K2Na4[(MoO2)2O(cit) 2]·5H2O. Polyhedron, 16: 75–79.
- [21] N. Barouti, C. Mainetti, L. Fontao and O. Sorg, (2015). L-tryptophan as a novel potential pharmacological treatment for wound healing via aryl hydrocarbon receptor activation. Dermatology, 230: 332–339.
- [22] A. Sadiq, M. Q. Hayat, G. A. Trali and A. Javed, (2018). Effects of essential amino acid "Tryptophan" in post burn skin wound healing Atta-ur-Rahman School of Applied Biosciences (ASAB). Int. J. Biosci., 12: 147–153.
- [23] L. G. Bandeira, B. S. Bortolot, M. J. Cecatto, A. Monte-Alto-Costa and B. Romana-Souza, (2015). Exogenous tryptophan promotes cutaneous wound healing of chronically stressed mice through inhibition of TNF-α and IDO activation. PLoS One, 10: 1–19.