Published March 14, 2023 | Version 01
Journal article Open

On the Modulation of Biocompatibility of Hydrogels with Collagen and Guar Gum by Adding Molybdenum/ aminoacid-based Metal-organic Frameworks

  • 1. Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, México.
  • 2. Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Av. Universidad #940, C.P. 20131, Aguascalientes, México.

Contributors

Contact person:

  • 1. Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, México.

Description

In this work, we report the synthesis of molybdenum metal-organic frameworks (Mo-MOFs) using 1,3,5-benzenetricarboxylic acid and the amino acids L-phenylalanine, L- tryptophan, and L-histidine as ligands. They were incorporated in hydrogel matrixes comprised of collagen and guar gum to obtain composite hydrogels. The effect of chemical structure of Mo-MOFs on the structure, physicochemical properties and in vitro biocompatibility of hydrogels was studied. These biomaterials showed a super absorbent performance (higher than 2000 ± 169%) and a high degree of reticulation (higher than 75 ± 6%). The microstructure of the composites showed a granular morphology with some porosity. These composites were degraded entirely by hydrolysis at pH 5 and pH 7 at room temperature in time lapses shorter than 15 days. Also, they were biocompatible with porcine dermis fibroblasts not showing cytotoxic effects up to 48 h of incubation allowing its proliferation, and it was observed that the MOF containing L-tryptophan improved notably the biocompatibility of the collagen/guar gum matrix. Finally, the matrixes were tested as vehicles for cell encapsulation and release. The slow-release rates show that fibroblasts tend to remain inside the hydrogel matrixes. Thus, these materials are more suitable for cell scaffolds and tissue engineering applications such as wound healing dressings.

Files

83467.pdf

Files (560.9 kB)

Name Size Download all
md5:a542bc774bf4253b1a1a1676d7ce2ada
560.9 kB Preview Download

Additional details

References

  • [1] N. Özen, Z. Özbaş, B. İzbudak, S. Emik, B. Özkahraman, A. Bal-Öztürk, (2022). Boric acid-impregnated silk fibroin/gelatin/hyaluronic acid-based films for improving the wound healing process. J. Appl. Polym. Sci., 139: 51715.
  • [2] R. Kapukaya and O. Ciloglu, (2020). Treatment of chronic wounds with polyurethane sponges impregnated with boric acid particles: A randomised controlled trial. Int. Wound J., 17: 1159–1165.
  • [3] P. F. Nur, T. Pınar, P. Uğur, Y. Ayşenur, E. Murat and Y. Kenan, (2021). Fabrication of polyamide 6/honey/boric acid mats by electrohydrodynamic processes for wound healing applications Polyamide 6/Honey/Boric Acid Bioactive Fibers. Mater. Today Commun., 29: 102921.
  • [4] L. Chen, (2019). Nursing Utility and Relevant Mechanism of Boric Acid in Promoting Wound Healing in Diabetic Mice. J. Pharm. Sci., Pages 181–185.
  • [5] W. Ma, T. Zhang, R. Li, Y. Niu, X. Yang, J. Liu, Y. Xu and C. M. Li, (2020). Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. J. Colloid Interface Sci., 559: 313–323.
  • [6] Y. Wan, J. Fang, Y. Wang, J. Sun, Y. Sun, X. Sun, M. Qi, W. Li, C. Li, Y. Zhou, L. Xu, B. Dong and L. Wang, (2021). Antibacterial Zeolite Imidazole Frameworks with Manganese Doping for Immunomodulation to Accelerate Infected Wound Healing. Adv. Healthc. Mater., 10: 2101515.
  • [7] Z. Wu, H. Zhuang, B. Ma, Y. Xiao, B. Koc, Y. Zhu and C. Wu, (2021). Manganese-Doped Calcium Silicate Nanowire Composite Hydrogels for Melanoma Treatment and Wound Healing. Research, Pages 1–12.
  • [8] S.K. Jaganathan & M. P.Mani, (2019). Electrospinning synthesis and assessment of physicochemical properties and biocompatibility of cobalt nitrate fibers for wound healing applications. An. Acad. Bras. Cienc., 91: 1–12.
  • [9] Q. Shi, X. Luo, Z. Huang, A. C. Midgley, B. Wang, R. Liu, D. Zhi, T. Wei, X. Zhou, M. Qiao, J. Zhang, D. Kong and K. Wang, (2019). Cobalt-mediated multi-functional dressings promote bacteria-infected wound healing. Acta Biomater., 86: 465–479.
  • [10] J. Li, F. Lv, J. Li, Y. Li, J. Gao, J. Luo, F. Xue, Q. Ke and H. Xu, (2020). Cobalt-based metal–organic framework as a dual cooperative controllable release system for accelerating diabetic wound healing. Nano Res., 13: 2268–2279.
  • [11] E.J. Baran, (1985). Química Bioinorgánica. McGraw-Hill, Madrid.
  • [12] J. Indrakumar, P. Balan, P. Murali, A. Solaimuthu, A. N. Vijayan and P. S. Korrapati, (2022). Applications of molybdenum oxide nanoparticles impregnated collagen scaffolds in wound therapeutics. J Trace Elem. Med. Biol., 72: 126983.
  • [13] X. T. He, X. Li, M. Zhang, B. M. Tian, L. J. Sun, C. S. Bi, D. K. Deng, H. Zhou, H. L. Qu, C. Wu and F. M. Chen, (2022). Role of molybdenum in material immunomodulation and periodontal wound healing: Targeting immunometabolism and mitochondrial function for macrophage modulation. Biomaterials, 283: 121439.
  • [14] C. E. Castañeda-Calzoncit, D. A. Cabrera-Munguia, J. A. Claudio-Rizo, D. A. Solís-Casados and C. M. López-Badillo, (2022). Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived from PET: Synthesis and Characterization. Asian J. Appl. Sci. Technol., 06: 25–34.
  • [15] J. A. Claudio-Rizo, N. G. Hernandez-Hernandez, L. F. Cano-Salazar, T. E. Flores-Guía, F. N. de la Cruz-Durán, D. A. Cabrera-Munguía and J. J. Becerra-Rodríguez, (2021). Novel semi-interpenetrated networks based on collagen-polyurethane-polysaccharides in hydrogel state for biomedical applications. J. Appl. Polym. Sci., 138: 49739.
  • [16] E. E. Lopéz-Martínez, J. A. Claudio-Rizo, M. Caldera-Villalobos, J. J. Becerra-Rodríguez, D. A. Cabrera-Munguía, L. F. Cano-Salazar and R. Betancourt-Galindo, (2022). Hydrogels for Biomedicine Based on Semi-Interpenetrating Polymeric Networks of Collagen/Guar Gum: Applications in Biomedical Field and Biocompatibility. Macromol. Res., 30: 384–390.
  • [17] M. Caldera-Villalobos, D. A. Cabrera-Munguía, J. J. Becerra-Rodríguez and J. A. Claudio-Rizo, (2022). Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal-organic frameworks. RSC Adv., 12: 3672–3686.
  • [18] J. A. Claudio-Rizo, M. Rangel-Argote, L. E. Castellano, J. Delgado, J. L. Mata-Mata and B. Mendoza-Novelo, (2017). Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Mater. Sci. Eng. C, 79: 793–801.
  • [19] B. Mendoza-Novelo, J. L. Mata-Mata, A. Vega-González, J. V. Cauich-Rodríguez and Á. Marcos-Fernández, (2014). Synthesis and characterization of protected oligourethanes as crosslinkers of collagen-based scaffolds. J. Mater. Chem. B, 2: 2874–2882.
  • [20] Z. H. Zhou, H. L. Wan and K. R. Tsai, (1997). Molybdenum (VI) complex with citric acid: Synthesis and structural characterization of 1 : 1 ratio citrato molybdate K2Na4[(MoO2)2O(cit) 2]·5H2O. Polyhedron, 16: 75–79.
  • [21] N. Barouti, C. Mainetti, L. Fontao and O. Sorg, (2015). L-tryptophan as a novel potential pharmacological treatment for wound healing via aryl hydrocarbon receptor activation. Dermatology, 230: 332–339.
  • [22] A. Sadiq, M. Q. Hayat, G. A. Trali and A. Javed, (2018). Effects of essential amino acid "Tryptophan" in post burn skin wound healing Atta-ur-Rahman School of Applied Biosciences (ASAB). Int. J. Biosci., 12: 147–153.
  • [23] L. G. Bandeira, B. S. Bortolot, M. J. Cecatto, A. Monte-Alto-Costa and B. Romana-Souza, (2015). Exogenous tryptophan promotes cutaneous wound healing of chronically stressed mice through inhibition of TNF-α and IDO activation. PLoS One, 10: 1–19.